Spaces:
Sleeping
Sleeping
Upload 6 files
Browse files- download_models.py +28 -0
- inference.py +242 -0
- predictor.py +640 -0
- requirements.txt +13 -3
- setup.sh +2 -0
- streamlit_app.py +15 -0
download_models.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from huggingface_hub import hf_hub_download, snapshot_download
|
3 |
+
|
4 |
+
# Target directory for models
|
5 |
+
target_dir = "Models"
|
6 |
+
os.makedirs(target_dir, exist_ok=True)
|
7 |
+
|
8 |
+
# Download specific files (Folds 1–5) from willieseun/Eagle-Team-TabPFN
|
9 |
+
print("Downloading fold models from willieseun/Eagle-Team-TabPFN...")
|
10 |
+
for i in range(1, 6):
|
11 |
+
file_name = f"Fold_{i}_best_model.tabpfn_fit"
|
12 |
+
model_path = hf_hub_download(
|
13 |
+
repo_id="willieseun/Eagle-Team-TabPFN",
|
14 |
+
filename=file_name,
|
15 |
+
local_dir=target_dir
|
16 |
+
)
|
17 |
+
print(f"Downloaded: {model_path}")
|
18 |
+
|
19 |
+
# Download full snapshot from wayne-chi/Eagle_Team
|
20 |
+
print("\nDownloading snapshot from wayne-chi/Eagle_Team...")
|
21 |
+
snapshot_download(
|
22 |
+
repo_id="wayne-chi/Eagle_Team",
|
23 |
+
revision="main", # Optional, default is "main"
|
24 |
+
local_dir=target_dir,
|
25 |
+
local_dir_use_symlinks=False
|
26 |
+
)
|
27 |
+
|
28 |
+
print("\n✅ All models downloaded successfully to:", target_dir)
|
inference.py
ADDED
@@ -0,0 +1,242 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
import joblib
|
5 |
+
import argparse
|
6 |
+
import os
|
7 |
+
import glob
|
8 |
+
from sklearn.multioutput import MultiOutputRegressor
|
9 |
+
from tabpfn_extensions.post_hoc_ensembles.sklearn_interface import AutoTabPFNRegressor
|
10 |
+
from tabpfn import TabPFNRegressor
|
11 |
+
|
12 |
+
|
13 |
+
os.environ["TABPFN_ALLOW_CPU_LARGE_DATASET"] = "true"
|
14 |
+
|
15 |
+
def joblib_load_cpu(path):
|
16 |
+
# Patch torch.load globally inside joblib to always load on CPU
|
17 |
+
original_load = torch.load
|
18 |
+
|
19 |
+
def cpu_loader(*args, **kwargs):
|
20 |
+
kwargs['map_location'] = torch.device('cpu')
|
21 |
+
return original_load(*args, **kwargs)
|
22 |
+
|
23 |
+
torch.load = cpu_loader
|
24 |
+
try:
|
25 |
+
model = joblib.load(path)
|
26 |
+
finally:
|
27 |
+
torch.load = original_load # Restore original torch.load
|
28 |
+
return model
|
29 |
+
|
30 |
+
class TabPFNEnsemblePredictor:
|
31 |
+
"""
|
32 |
+
A class to load an ensemble of TabPFN models and generate averaged predictions.
|
33 |
+
|
34 |
+
This class is designed to find and load all k-fold models from a specified
|
35 |
+
directory, handle the necessary feature engineering, and produce a single,
|
36 |
+
ensembled prediction from various input types (DataFrame, numpy array, or CSV file path).
|
37 |
+
|
38 |
+
Attributes:
|
39 |
+
model_paths (list): A list of file paths for the loaded models.
|
40 |
+
models (list): A list of the loaded model objects.
|
41 |
+
target_cols (list): The names of the target columns for the output DataFrame.
|
42 |
+
"""
|
43 |
+
|
44 |
+
def __init__(self, model_dir: str, model_pattern: str = "Fold_*_best_model.tabpfn_fit*"):
|
45 |
+
"""
|
46 |
+
Initializes the predictor by finding and loading the ensemble of models.
|
47 |
+
|
48 |
+
Args:
|
49 |
+
model_dir (str): The directory containing the saved .tabpfn_fit model files.
|
50 |
+
model_pattern (str, optional): The glob pattern to find model files.
|
51 |
+
Defaults to "Fold_*_best_model.tabpfn_fit".
|
52 |
+
|
53 |
+
Raises:
|
54 |
+
FileNotFoundError: If no models matching the pattern are found in the directory.
|
55 |
+
"""
|
56 |
+
print("Initializing the TabPFN Ensemble Predictor...")
|
57 |
+
self.model_paths = sorted(glob.glob(os.path.join(model_dir, model_pattern)))
|
58 |
+
if not self.model_paths:
|
59 |
+
raise FileNotFoundError(
|
60 |
+
f"Error: No models found in '{model_dir}' matching the pattern '{model_pattern}'"
|
61 |
+
)
|
62 |
+
|
63 |
+
print(f"Found {len(self.model_paths)} models to form the ensemble.")
|
64 |
+
self.models = self._load_models()
|
65 |
+
self.target_cols = [f"BlendProperty{i}" for i in range(1, 11)]
|
66 |
+
|
67 |
+
def _load_models(self) -> list:
|
68 |
+
"""
|
69 |
+
Loads the TabPFN models from the specified paths and moves them to the CPU.
|
70 |
+
|
71 |
+
This is a private method called during initialization.
|
72 |
+
"""
|
73 |
+
loaded_models = []
|
74 |
+
for model_path in self.model_paths:
|
75 |
+
print(f"Loading model: {os.path.basename(model_path)}...")
|
76 |
+
try:
|
77 |
+
# Move model components to CPU for inference to avoid potential CUDA errors
|
78 |
+
# and ensure compatibility on machines without a GPU.
|
79 |
+
if not torch.cuda.is_available():
|
80 |
+
#torch.device("cpu") # Force default
|
81 |
+
#os.environ["PYTORCH_NO_CUDA_MEMORY_CACHING"] = "1"
|
82 |
+
#os.environ["CUDA_VISIBLE_DEVICES"] = ""
|
83 |
+
#os.environ["HSA_OVERRIDE_GFX_VERSION"] = "0"
|
84 |
+
model = joblib_load_cpu(model_path)
|
85 |
+
for estimator in model.estimators_:
|
86 |
+
estimator.device = "cpu"
|
87 |
+
estimator.max_time = 40
|
88 |
+
print("Cuda not available using cpu")
|
89 |
+
#for estimator in model.estimators_:
|
90 |
+
# if hasattr(estimator, "predictor_") and hasattr(estimator.predictor_, "predictors"):
|
91 |
+
# for p in estimator.predictor_.predictors:
|
92 |
+
# p.to("cpu")
|
93 |
+
# if hasattr(estimator.predictor_, 'to'):
|
94 |
+
# estimator.predictor_.to('cpu')
|
95 |
+
|
96 |
+
else:
|
97 |
+
print("Cuda is available")
|
98 |
+
model = joblib.load(model_path)
|
99 |
+
for estimator in model.estimators_:
|
100 |
+
if hasattr(estimator, "predictor_") and hasattr(estimator.predictor_, "predictors"):
|
101 |
+
for p in estimator.predictor_.predictors:
|
102 |
+
p.to("cuda")
|
103 |
+
|
104 |
+
loaded_models.append(model)
|
105 |
+
print(f"Successfully loaded {os.path.basename(model_path)}")
|
106 |
+
except Exception as e:
|
107 |
+
print(f"Warning: Could not load model from {model_path}. Skipping. Error: {e}")
|
108 |
+
return loaded_models
|
109 |
+
|
110 |
+
@staticmethod
|
111 |
+
def _feature_engineering(df: pd.DataFrame) -> pd.DataFrame:
|
112 |
+
"""
|
113 |
+
Applies feature engineering to the input dataframe. This is a static method
|
114 |
+
as it does not depend on the state of the class instance.
|
115 |
+
|
116 |
+
Args:
|
117 |
+
df (pd.DataFrame): The input dataframe.
|
118 |
+
|
119 |
+
Returns:
|
120 |
+
pd.DataFrame: The dataframe with new engineered features.
|
121 |
+
"""
|
122 |
+
components = ['Component1', 'Component2', 'Component3', 'Component4', 'Component5']
|
123 |
+
properties = [f'Property{i}' for i in range(1, 11)]
|
124 |
+
df_featured = df.copy()
|
125 |
+
|
126 |
+
for prop in properties:
|
127 |
+
df_featured[f'Weighted_{prop}'] = sum(
|
128 |
+
df_featured[f'{comp}_fraction'] * df_featured[f'{comp}_{prop}'] for comp in components
|
129 |
+
)
|
130 |
+
cols = [f'{comp}_{prop}' for comp in components]
|
131 |
+
df_featured[f'{prop}_variance'] = df_featured[cols].var(axis=1)
|
132 |
+
df_featured[f'{prop}_range'] = df_featured[cols].max(axis=1) - df_featured[cols].min(axis=1)
|
133 |
+
|
134 |
+
return df_featured
|
135 |
+
|
136 |
+
def custom_predict(self, input_data: pd.DataFrame or np.ndarray or str) -> (np.ndarray, pd.DataFrame):
|
137 |
+
"""
|
138 |
+
Generates ensembled predictions for the given input data.
|
139 |
+
|
140 |
+
This method takes input data, preprocesses it if necessary, generates a
|
141 |
+
prediction from each model in the ensemble, and returns the averaged result.
|
142 |
+
|
143 |
+
Args:
|
144 |
+
input_data (pd.DataFrame or np.ndarray or str): The input data for prediction.
|
145 |
+
Can be a pandas DataFrame, a numpy array (must be pre-processed),
|
146 |
+
or a string path to a CSV file.
|
147 |
+
|
148 |
+
Returns:
|
149 |
+
tuple: A tuple containing:
|
150 |
+
- np.ndarray: The averaged predictions as a numpy array.
|
151 |
+
- pd.DataFrame: The averaged predictions as a pandas DataFrame.
|
152 |
+
"""
|
153 |
+
if not self.models:
|
154 |
+
print("Error: No models were loaded. Cannot make predictions.")
|
155 |
+
return None, None
|
156 |
+
|
157 |
+
# --- Data Preparation ---
|
158 |
+
if isinstance(input_data, str) and os.path.isfile(input_data):
|
159 |
+
print(f"Loading and processing data from CSV: {input_data}")
|
160 |
+
test_df = pd.read_csv(input_data)
|
161 |
+
processed_df = self._feature_engineering(test_df)
|
162 |
+
elif isinstance(input_data, pd.DataFrame):
|
163 |
+
print("Processing input DataFrame...")
|
164 |
+
processed_df = self._feature_engineering(input_data)
|
165 |
+
elif isinstance(input_data, np.ndarray):
|
166 |
+
print("Using input numpy array directly (assuming it's pre-processed).")
|
167 |
+
sub = input_data
|
168 |
+
else:
|
169 |
+
raise TypeError("Input data must be a pandas DataFrame, a numpy array, or a path to a CSV file.")
|
170 |
+
|
171 |
+
if isinstance(input_data, (str, pd.DataFrame)):
|
172 |
+
if "ID" in processed_df.columns:
|
173 |
+
sub = processed_df.drop(columns=["ID"]).values
|
174 |
+
else:
|
175 |
+
sub = processed_df.values
|
176 |
+
|
177 |
+
# --- Prediction Loop ---
|
178 |
+
all_fold_predictions = []
|
179 |
+
print("\nGenerating predictions from the model ensemble...")
|
180 |
+
for i, model in enumerate(self.models):
|
181 |
+
try:
|
182 |
+
y_sub = model.predict(sub)
|
183 |
+
all_fold_predictions.append(y_sub)
|
184 |
+
print(f" - Prediction from model {i+1} completed.")
|
185 |
+
except Exception as e:
|
186 |
+
print(f" - Warning: Could not predict with model {i+1}. Skipping. Error: {e}")
|
187 |
+
|
188 |
+
if not all_fold_predictions:
|
189 |
+
print("\nError: No predictions were generated from any model.")
|
190 |
+
return None, None
|
191 |
+
|
192 |
+
# --- Averaging ---
|
193 |
+
print("\nAveraging predictions from all models...")
|
194 |
+
averaged_preds_array = np.mean(all_fold_predictions, axis=0)
|
195 |
+
averaged_preds_df = pd.DataFrame(averaged_preds_array, columns=self.target_cols)
|
196 |
+
print("Ensemble prediction complete.")
|
197 |
+
|
198 |
+
return averaged_preds_array, averaged_preds_df
|
199 |
+
|
200 |
+
# This block allows the script to be run directly from the command line
|
201 |
+
if __name__ == "__main__":
|
202 |
+
parser = argparse.ArgumentParser(
|
203 |
+
description="""
|
204 |
+
Command-line interface for the TabPFNEnsemblePredictor.
|
205 |
+
|
206 |
+
Example Usage:
|
207 |
+
python inference.py --model_dir ./saved_models/ --input_path ./test_data.csv --output_path ./final_preds.csv
|
208 |
+
""",
|
209 |
+
formatter_class=argparse.RawTextHelpFormatter
|
210 |
+
)
|
211 |
+
|
212 |
+
parser.add_argument("--model_dir", type=str, required=True,
|
213 |
+
help="Directory containing the saved .tabpfn_fit model files.")
|
214 |
+
parser.add_argument("--input_path", type=str, required=True,
|
215 |
+
help="Path to the input CSV file for prediction.")
|
216 |
+
parser.add_argument("--output_path", type=str, default="predictions_ensembled.csv",
|
217 |
+
help="Path to save the final ensembled predictions CSV file.")
|
218 |
+
|
219 |
+
args = parser.parse_args()
|
220 |
+
|
221 |
+
if not os.path.isdir(args.model_dir):
|
222 |
+
print(f"Error: Model directory not found at {args.model_dir}")
|
223 |
+
elif not os.path.exists(args.input_path):
|
224 |
+
print(f"Error: Input file not found at {args.input_path}")
|
225 |
+
else:
|
226 |
+
try:
|
227 |
+
# 1. Instantiate the predictor class
|
228 |
+
predictor = TabPFNEnsemblePredictor(model_dir=args.model_dir)
|
229 |
+
|
230 |
+
# 2. Call the predict method
|
231 |
+
preds_array, preds_df = predictor.predict(args.input_path)
|
232 |
+
|
233 |
+
# 3. Save the results
|
234 |
+
if preds_df is not None:
|
235 |
+
preds_df.to_csv(args.output_path, index=False)
|
236 |
+
print(f"\nEnsembled predictions successfully saved to {args.output_path}")
|
237 |
+
print("\n--- Sample of Final Averaged Predictions ---")
|
238 |
+
print(preds_df.head())
|
239 |
+
print("------------------------------------------")
|
240 |
+
|
241 |
+
except Exception as e:
|
242 |
+
print(f"\nAn error occurred during the process: {e}")
|
predictor.py
ADDED
@@ -0,0 +1,640 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# prompt: import pandas and basic machine learning models for regression
|
2 |
+
|
3 |
+
import pandas as pd
|
4 |
+
from sklearn.linear_model import LinearRegression
|
5 |
+
from sklearn.tree import DecisionTreeRegressor
|
6 |
+
from sklearn.ensemble import RandomForestRegressor
|
7 |
+
from sklearn.svm import SVR
|
8 |
+
|
9 |
+
|
10 |
+
from sklearn.model_selection import train_test_split
|
11 |
+
|
12 |
+
import itertools
|
13 |
+
import random
|
14 |
+
|
15 |
+
import torch
|
16 |
+
import random
|
17 |
+
import numpy as np
|
18 |
+
|
19 |
+
import os
|
20 |
+
import joblib
|
21 |
+
|
22 |
+
import matplotlib.pyplot as plt
|
23 |
+
|
24 |
+
from tabpfn import TabPFNRegressor
|
25 |
+
from sklearn.model_selection import KFold
|
26 |
+
from sklearn.multioutput import MultiOutputRegressor
|
27 |
+
from sklearn.metrics import mean_squared_error, mean_absolute_percentage_error
|
28 |
+
from sklearn.preprocessing import MinMaxScaler
|
29 |
+
from sklearn.preprocessing import PolynomialFeatures
|
30 |
+
|
31 |
+
from sklearn.metrics import mean_absolute_percentage_error
|
32 |
+
|
33 |
+
from sklearn.linear_model import LinearRegression
|
34 |
+
|
35 |
+
from inference import TabPFNEnsemblePredictor # import inference.py
|
36 |
+
|
37 |
+
# from sklearn.metrics import mean_absolute_percentage_error
|
38 |
+
# from tabpfn_extensions.post_hoc_ensembles.sklearn_interface import AutoTabPFNRegressor
|
39 |
+
from itertools import combinations
|
40 |
+
from scipy.special import comb
|
41 |
+
# from tabpfn.model.loading import (
|
42 |
+
# load_fitted_tabpfn_model,
|
43 |
+
# save_fitted_tabpfn_model,
|
44 |
+
# )
|
45 |
+
|
46 |
+
|
47 |
+
class EagleBlendPredictor:
|
48 |
+
def __init__(self, model_sources = './Models'):
|
49 |
+
"""
|
50 |
+
model_sources: Dict[str, Any]
|
51 |
+
A dictionary where keys are 'BlendProperty1', ..., 'BlendProperty10'
|
52 |
+
and values are:
|
53 |
+
- loaded model objects, or
|
54 |
+
- callables returning models, or
|
55 |
+
- custom loading logic (you will supply these)
|
56 |
+
"""
|
57 |
+
self.home = model_sources
|
58 |
+
self.saved_files_map = {
|
59 |
+
1: {
|
60 |
+
"model": 'linear_model_poly_target_1.joblib',
|
61 |
+
"transform": 'poly1_features.joblib'
|
62 |
+
},
|
63 |
+
2: {
|
64 |
+
"model": 'linear_model_poly_target_2.joblib',
|
65 |
+
"transform": 'poly2_features.joblib'
|
66 |
+
},
|
67 |
+
5: {
|
68 |
+
"model": 'tabpfn_model_target_5.joblib', #tabpfn_model_target_5_cpu.tabpfn_fit,'tabpfn_model_target_5_cpu.tabpfn_fit'
|
69 |
+
"transform": 'poly5_features.joblib'
|
70 |
+
},
|
71 |
+
6: {
|
72 |
+
"model": 'linear_model_poly_target_6.joblib',
|
73 |
+
"transform": 'poly6_features.joblib'
|
74 |
+
},
|
75 |
+
7: {
|
76 |
+
"model": 'tabpfn_model_target_7.joblib',
|
77 |
+
# For Property 7, the transformation is the mixture feature generation,
|
78 |
+
# which is not a saved object like PolynomialFeatures.
|
79 |
+
# You would need to apply the generate_mixture_features function.
|
80 |
+
"transform_function": "generate_mixture_features"
|
81 |
+
},
|
82 |
+
8: {
|
83 |
+
# For Property 8, the "model" is the initial prediction model (not explicitly saved in this workflow)
|
84 |
+
# and the correction is the piecewise function defined by parameters and threshold.
|
85 |
+
"params": 'piecewise_params_prop8.joblib',
|
86 |
+
"threshold": 'piecewise_threshold_prop8.joblib',
|
87 |
+
"correction_function": "piecewise_model" # Reference the function name
|
88 |
+
},
|
89 |
+
10: {
|
90 |
+
"model": 'linear_model_poly_target_10.joblib',
|
91 |
+
"transform": 'poly10_features.joblib'
|
92 |
+
}
|
93 |
+
}
|
94 |
+
|
95 |
+
|
96 |
+
self.models = {}
|
97 |
+
# Load models and transformers manually
|
98 |
+
self.model_1 = joblib.load(os.path.join(self.home, self.saved_files_map[1]["model"]))
|
99 |
+
self.poly_1 = joblib.load(os.path.join(self.home, self.saved_files_map[1]["transform"]))
|
100 |
+
|
101 |
+
self.model_2 = joblib.load(os.path.join(self.home, self.saved_files_map[2]["model"]))
|
102 |
+
self.poly_2 = joblib.load(os.path.join(self.home, self.saved_files_map[2]["transform"]))
|
103 |
+
|
104 |
+
self.model_5 = joblib.load(
|
105 |
+
os.path.join(self.home, self.saved_files_map[5]["model"]), #device="cpu"
|
106 |
+
)
|
107 |
+
self.poly_5 = joblib.load(os.path.join(self.home, self.saved_files_map[5]["transform"]))
|
108 |
+
|
109 |
+
self.model_6 = joblib.load(os.path.join(self.home, self.saved_files_map[6]["model"]))
|
110 |
+
self.poly_6 = joblib.load(os.path.join(self.home, self.saved_files_map[6]["transform"]))
|
111 |
+
|
112 |
+
self.model_7 = joblib.load(
|
113 |
+
os.path.join(self.home, self.saved_files_map[7]["model"]), #device="cpu"
|
114 |
+
)
|
115 |
+
# No saved transform for model_7 — use generate_mixture_features later in prediction
|
116 |
+
self.piecewise_params_8 = joblib.load(os.path.join(self.home, self.saved_files_map[8]["params"]))
|
117 |
+
self.piecewise_threshold_8 = joblib.load(os.path.join(self.home, self.saved_files_map[8]["threshold"]))
|
118 |
+
|
119 |
+
# Use piecewise_model function later
|
120 |
+
|
121 |
+
self.model_10 = joblib.load(os.path.join(self.home, self.saved_files_map[10]["model"]))
|
122 |
+
self.poly_10 = joblib.load(os.path.join(self.home, self.saved_files_map[10]["transform"]))
|
123 |
+
|
124 |
+
self.model_3489 = TabPFNEnsemblePredictor(model_dir="Models")
|
125 |
+
pass
|
126 |
+
|
127 |
+
|
128 |
+
def piecewise_model(self, x, boundaries=np.linspace(-0.2, 0.2, 10+1)[1:-1]):
|
129 |
+
"""
|
130 |
+
x: a single float value
|
131 |
+
params: list of 20 parameters [A1, B1, A2, B2, ..., A10, B10]
|
132 |
+
boundaries: 9 values that divide x into 10 regions
|
133 |
+
"""
|
134 |
+
params = self.piecewise_params_8
|
135 |
+
# Unpack parameters
|
136 |
+
segments = [(params[i], params[i+1]) for i in range(0, 20, 2)]
|
137 |
+
|
138 |
+
# Piecewise logic using boundaries
|
139 |
+
for i, bound in enumerate(boundaries):
|
140 |
+
if x < bound:
|
141 |
+
A, B = segments[i]
|
142 |
+
return A * x + B
|
143 |
+
# If x is greater than all boundaries, use the last segment
|
144 |
+
A, B = segments[-1]
|
145 |
+
return A * x + B
|
146 |
+
|
147 |
+
def predict_BlendProperty1(self, data, full = True):
|
148 |
+
# Dummy custom transformation and prediction for BlendProperty1
|
149 |
+
if full:
|
150 |
+
features = self._transform1(data)
|
151 |
+
features = self.poly_1.transform(features)
|
152 |
+
else:
|
153 |
+
features = self.poly_1.transform(data)
|
154 |
+
res_df = self.model_1.predict(features)
|
155 |
+
return pd.DataFrame(res_df, columns=['BlendProperty1'])
|
156 |
+
|
157 |
+
|
158 |
+
def predict_BlendProperty2(self, data, full = True):
|
159 |
+
if full:
|
160 |
+
features = self._transform2(data)
|
161 |
+
features = self.poly_2.transform(features)
|
162 |
+
else:
|
163 |
+
features = self.poly_2.transform(data)
|
164 |
+
res_df = self.model_2.predict(features)
|
165 |
+
return pd.DataFrame(res_df, columns=['BlendProperty2'])
|
166 |
+
|
167 |
+
|
168 |
+
def predict_BlendProperty3489(self, df):
|
169 |
+
arrray,result_df = self.model_3489.custom_predict(df)
|
170 |
+
ans_df= result_df[['BlendProperty3','BlendProperty4','BlendProperty8','BlendProperty9']].copy() # Explicitly create a copy
|
171 |
+
|
172 |
+
ans_df.loc[ans_df['BlendProperty8'].abs()<0.2,'BlendProperty8'] = ans_df[ans_df['BlendProperty8'].abs()<0.2]['BlendProperty8'].apply(self.piecewise_model)
|
173 |
+
ans_df.loc[ans_df['BlendProperty9'].abs()<0.1,'BlendProperty9'] = 0 #ans_df[ans_df['BlendProperty8'].abs()<0.2]['BlendProperty8'].apply(self.piecewise_model)
|
174 |
+
|
175 |
+
return ans_df
|
176 |
+
|
177 |
+
# ndf.loc[ndf[pred_col].abs() < threshold_8, pred_col] = ndf[ndf[pred_col].abs() < threshold_8][pred_col].apply(func8)
|
178 |
+
|
179 |
+
def predict_BlendProperty5(self, data, full =True ):
|
180 |
+
if full:
|
181 |
+
features = self._transform5(data)
|
182 |
+
features = self.poly_5.transform(features)
|
183 |
+
else:
|
184 |
+
features = self.poly_5.transform(data)
|
185 |
+
res_df = self.model_5.predict(features)
|
186 |
+
return pd.DataFrame(res_df, columns=['BlendProperty5'])
|
187 |
+
|
188 |
+
|
189 |
+
def predict_BlendProperty6(self, data, full=True):
|
190 |
+
if full:
|
191 |
+
features = self._transform6(data)
|
192 |
+
features = self.poly_6.transform(features)
|
193 |
+
else:
|
194 |
+
features = self.poly_6.transform(data)
|
195 |
+
res_df = self.model_6.predict(features)
|
196 |
+
return pd.DataFrame(res_df, columns=['BlendProperty6'])
|
197 |
+
|
198 |
+
|
199 |
+
def predict_BlendProperty7(self, data, full =True)-> pd.DataFrame:
|
200 |
+
if full:
|
201 |
+
features = self._transform7(data)
|
202 |
+
else:
|
203 |
+
raise ValueError("BlendProperty7 prediction requires full data.")
|
204 |
+
res_df = self.model_7.predict(features)
|
205 |
+
return pd.DataFrame(res_df, columns=['BlendProperty7'])
|
206 |
+
|
207 |
+
|
208 |
+
def predict_BlendProperty10(self, data, full = False)-> pd.DataFrame:
|
209 |
+
if full:
|
210 |
+
features = self._transform10(data)
|
211 |
+
features = self.poly_10.transform(features)
|
212 |
+
else:
|
213 |
+
features = self.poly_10.transform(data)
|
214 |
+
res_df = self.model_10.predict(features)
|
215 |
+
return pd.DataFrame(res_df, columns=['BlendProperty10'])
|
216 |
+
|
217 |
+
|
218 |
+
def predict_all(self, df: pd.DataFrame) -> pd.DataFrame:
|
219 |
+
"""
|
220 |
+
Generates predictions for all blend properties using the individual prediction methods.
|
221 |
+
|
222 |
+
Args:
|
223 |
+
df: Input DataFrame containing the features.
|
224 |
+
|
225 |
+
Returns:
|
226 |
+
DataFrame with predicted blend properties from 'BlendProperty1' to 'BlendProperty10'.
|
227 |
+
"""
|
228 |
+
predictions_list = []
|
229 |
+
|
230 |
+
# Predict individual properties
|
231 |
+
predictions_list.append(self.predict_BlendProperty1(df, full=True))
|
232 |
+
predictions_list.append(self.predict_BlendProperty2(df, full=True))
|
233 |
+
|
234 |
+
# Predict BlendProperty3, 4, 8, and 9 together using predict_BlendProperty3489
|
235 |
+
# Assuming predict_BlendProperty3489 returns a DataFrame with columns for these properties.
|
236 |
+
predictions_3489_df = self.predict_BlendProperty3489(df)
|
237 |
+
predictions_list.append(predictions_3489_df[['BlendProperty3']])
|
238 |
+
predictions_list.append(predictions_3489_df[['BlendProperty4']])
|
239 |
+
predictions_list.append(predictions_3489_df[['BlendProperty8']])
|
240 |
+
predictions_list.append(predictions_3489_df[['BlendProperty9']])
|
241 |
+
|
242 |
+
|
243 |
+
predictions_list.append(self.predict_BlendProperty5(df, full=True))
|
244 |
+
predictions_list.append(self.predict_BlendProperty6(df, full=True))
|
245 |
+
predictions_list.append(self.predict_BlendProperty7(df, full=True))
|
246 |
+
|
247 |
+
|
248 |
+
predictions_list.append(self.predict_BlendProperty10(df, full=True))
|
249 |
+
|
250 |
+
|
251 |
+
# Concatenate the list of single-column DataFrames into a single DataFrame
|
252 |
+
predictions_df = pd.concat(predictions_list, axis=1)
|
253 |
+
|
254 |
+
# Ensure columns are in the desired order
|
255 |
+
ordered_cols = [f'BlendProperty{i}' for i in range(1, 11)]
|
256 |
+
# Reindex to ensure columns are in order, dropping any not generated (though all should be)
|
257 |
+
predictions_df = predictions_df.reindex(columns=ordered_cols)
|
258 |
+
|
259 |
+
|
260 |
+
return predictions_df
|
261 |
+
|
262 |
+
|
263 |
+
|
264 |
+
|
265 |
+
|
266 |
+
|
267 |
+
# Dummy transformation functions (replace with your actual logic later)
|
268 |
+
def _transform1(self, data):
|
269 |
+
"""
|
270 |
+
Transforms input data (DataFrame or NumPy array) to features for BlendProperty1 prediction.
|
271 |
+
|
272 |
+
If input is a DataFrame, selects 'ComponentX_fraction' (X=1-5) and 'ComponentX_Property1' (X=1-5).
|
273 |
+
If input is a NumPy array, assumes the columns are already in the correct order:
|
274 |
+
Component1-5_fraction, Component1-5_Property1, Component1-5_Property2, ..., Component1-5_Property10
|
275 |
+
and selects the relevant columns for Property1.
|
276 |
+
Args:
|
277 |
+
data: pandas DataFrame or numpy array.
|
278 |
+
|
279 |
+
Returns:
|
280 |
+
numpy array of transformed features.
|
281 |
+
"""
|
282 |
+
fraction_cols = [f'Component{i+1}_fraction' for i in range(5)]
|
283 |
+
property_cols = [f'Component{i+1}_Property1' for i in range(5)]
|
284 |
+
required_cols = fraction_cols + property_cols
|
285 |
+
|
286 |
+
if isinstance(data, pd.DataFrame):
|
287 |
+
# Select the required columns from the DataFrame
|
288 |
+
# Ensure columns exist to avoid KeyError
|
289 |
+
try:
|
290 |
+
features = data[required_cols]
|
291 |
+
except KeyError as e:
|
292 |
+
missing_col = str(e).split("'")[1]
|
293 |
+
raise ValueError(f"Input DataFrame is missing required column: {missing_col}") from e
|
294 |
+
|
295 |
+
elif isinstance(data, np.ndarray):
|
296 |
+
# Assume the NumPy array has columns in the specified order
|
297 |
+
# Select the first 5 columns (fractions) and columns for Property1 (indices 5 to 9)
|
298 |
+
if data.shape[1] < 10: # Need at least 5 fractions and 5 properties
|
299 |
+
raise ValueError(f"Input NumPy array must have at least 10 columns for this transformation.")
|
300 |
+
|
301 |
+
# Selecting columns based on the assumed order: fractions (0-4), Property1 (5-9)
|
302 |
+
features = data[:, :10] # Select first 10 columns: 5 fractions + 5 Property1
|
303 |
+
|
304 |
+
else:
|
305 |
+
raise TypeError("Input data must be a pandas DataFrame or a numpy array.")
|
306 |
+
|
307 |
+
# Return as numpy array, as expected by PolynomialFeatures.transform
|
308 |
+
return features
|
309 |
+
|
310 |
+
def _transform2(self, data):
|
311 |
+
"""
|
312 |
+
Transforms input data (DataFrame or NumPy array) to features for BlendProperty2 prediction.
|
313 |
+
"""
|
314 |
+
fraction_cols = [f'Component{i+1}_fraction' for i in range(5)]
|
315 |
+
property_cols = [f'Component{i+1}_Property2' for i in range(5)]
|
316 |
+
required_cols = fraction_cols + property_cols
|
317 |
+
|
318 |
+
if isinstance(data, pd.DataFrame):
|
319 |
+
try:
|
320 |
+
features = data[required_cols]
|
321 |
+
except KeyError as e:
|
322 |
+
missing_col = str(e).split("'")[1]
|
323 |
+
raise ValueError(f"Input DataFrame is missing required column: {missing_col}") from e
|
324 |
+
|
325 |
+
elif isinstance(data, np.ndarray):
|
326 |
+
# Assume the NumPy array has columns in the specified order
|
327 |
+
# Select the first 5 columns (fractions) and columns for Property2 (indices 10 to 14)
|
328 |
+
if data.shape[1] < 15: # Need at least 5 fractions, 5 Property1, and 5 Property2
|
329 |
+
raise ValueError(f"Input NumPy array must have at least 15 columns for this transformation.")
|
330 |
+
|
331 |
+
# Selecting columns based on the assumed order: fractions (0-4), Property1 (5-9), Property2 (10-14)
|
332 |
+
features = np.concatenate([data[:, :5], data[:, 10:15]], axis=1)
|
333 |
+
|
334 |
+
else:
|
335 |
+
raise TypeError("Input data must be a pandas DataFrame or a numpy array.")
|
336 |
+
|
337 |
+
return features.values if isinstance(features, pd.DataFrame) else features
|
338 |
+
|
339 |
+
def _transform3(self, data): return None
|
340 |
+
|
341 |
+
def _transform4(self, data): return None
|
342 |
+
|
343 |
+
def _transform5(self, data):
|
344 |
+
"""
|
345 |
+
Transforms input data (DataFrame or NumPy array) to features for BlendProperty5 prediction.
|
346 |
+
Args:
|
347 |
+
data: pandas DataFrame or numpy array.
|
348 |
+
|
349 |
+
Returns:
|
350 |
+
numpy array of transformed features.
|
351 |
+
"""
|
352 |
+
fraction_cols = [f'Component{i+1}_fraction' for i in range(5)]
|
353 |
+
property_cols = [f'Component{i+1}_Property5' for i in range(5)]
|
354 |
+
required_cols = fraction_cols + property_cols
|
355 |
+
|
356 |
+
if isinstance(data, pd.DataFrame):
|
357 |
+
try:
|
358 |
+
features = data[required_cols]
|
359 |
+
except KeyError as e:
|
360 |
+
missing_col = str(e).split("'")[1]
|
361 |
+
raise ValueError(f"Input DataFrame is missing required column: {missing_col}") from e
|
362 |
+
|
363 |
+
elif isinstance(data, np.ndarray):
|
364 |
+
# Assume the NumPy array has columns in the specified order
|
365 |
+
# Select the first 5 columns (fractions) and columns for Property5 (indices 25 to 29)
|
366 |
+
if data.shape[1] < 30: # Need at least 5 fractions and 5 properties for each of Property1-5
|
367 |
+
raise ValueError(f"Input NumPy array must have at least 30 columns for this transformation.")
|
368 |
+
|
369 |
+
# Selecting columns based on the assumed order: fractions (0-4), properties (5-9) for P1, (10-14) for P2, ..., (25-29) for P5
|
370 |
+
features = np.concatenate([data[:, :5], data[:, 25:30]], axis=1)
|
371 |
+
|
372 |
+
else:
|
373 |
+
raise TypeError("Input data must be a pandas DataFrame or a numpy array.")
|
374 |
+
|
375 |
+
return features
|
376 |
+
|
377 |
+
|
378 |
+
def _transform6(self, data):
|
379 |
+
"""
|
380 |
+
Transforms input data (DataFrame or NumPy array) to features for BlendProperty6 prediction.
|
381 |
+
|
382 |
+
Args:
|
383 |
+
data: pandas DataFrame or numpy array.
|
384 |
+
|
385 |
+
Returns:
|
386 |
+
numpy array of transformed features.
|
387 |
+
"""
|
388 |
+
fraction_cols = [f'Component{i+1}_fraction' for i in range(5)]
|
389 |
+
property_cols = [f'Component{i+1}_Property6' for i in range(5)]
|
390 |
+
required_cols = fraction_cols + property_cols
|
391 |
+
|
392 |
+
if isinstance(data, pd.DataFrame):
|
393 |
+
try:
|
394 |
+
features = data[required_cols]
|
395 |
+
except KeyError as e:
|
396 |
+
missing_col = str(e).split("'")[1]
|
397 |
+
raise ValueError(f"Input DataFrame is missing required column: {missing_col}") from e
|
398 |
+
|
399 |
+
elif isinstance(data, np.ndarray):
|
400 |
+
# Assume the NumPy array has columns in the specified order
|
401 |
+
# Select the first 5 columns (fractions) and columns for Property6 (indices 30 to 34)
|
402 |
+
if data.shape[1] < 35: # Need at least 5 fractions and 5 properties for each of Property1-6
|
403 |
+
raise ValueError(f"Input NumPy array must have at least 35 columns for this transformation.")
|
404 |
+
|
405 |
+
# Selecting columns based on the assumed order: fractions (0-4), properties (5-9) for P1, ..., (30-34) for P6
|
406 |
+
features = np.concatenate([data[:, :5], data[:, 30:35]], axis=1)
|
407 |
+
|
408 |
+
else:
|
409 |
+
raise TypeError("Input data must be a pandas DataFrame or a numpy array.")
|
410 |
+
|
411 |
+
return features
|
412 |
+
|
413 |
+
|
414 |
+
|
415 |
+
def _transform7(self, df: pd.DataFrame) -> pd.DataFrame:
|
416 |
+
"""
|
417 |
+
Corrected transformation function for BlendProperty7 prediction.
|
418 |
+
|
419 |
+
Args:
|
420 |
+
df: Input DataFrame containing the features.
|
421 |
+
|
422 |
+
Returns:
|
423 |
+
DataFrame with generated features for BlendProperty7 prediction.
|
424 |
+
"""
|
425 |
+
tn = 7
|
426 |
+
fn = tn
|
427 |
+
|
428 |
+
property_tn = [f'Component{i+1}_Property{fn}' for i in range(5)]
|
429 |
+
fraction_cols = [f'Component{i+1}_fraction' for i in range(5)]
|
430 |
+
|
431 |
+
# Generate mixture features
|
432 |
+
df_prop7 = df[fraction_cols + property_tn].reset_index(drop=True) # Reset index here
|
433 |
+
# Call the class's generate_mixture_features method
|
434 |
+
mixture_features = self.generate_mixture_features(df_prop7)
|
435 |
+
|
436 |
+
# Identify columns to concatenate (all ComponentX_PropertyY where Y != 7)
|
437 |
+
other_property_cols = [f"Component{i}_Property{j}" for j in range(1,11) for i in range(1,6) if j!= 7]
|
438 |
+
|
439 |
+
# Select these columns from the input DataFrame
|
440 |
+
try:
|
441 |
+
# Use .loc to preserve the original index when selecting columns, then reset index
|
442 |
+
other_features_df = df.loc[:, other_property_cols].reset_index(drop=True) # Reset index here
|
443 |
+
except KeyError as e:
|
444 |
+
missing_col = str(e).split("'")[1]
|
445 |
+
raise ValueError(f"Input DataFrame for _transform7 is missing required column: {missing_col}") from e
|
446 |
+
|
447 |
+
|
448 |
+
# Concatenate along columns (axis=1). Indices should now be aligned after resetting.
|
449 |
+
combined_features = pd.concat([mixture_features, other_features_df], axis=1)
|
450 |
+
|
451 |
+
return combined_features
|
452 |
+
|
453 |
+
def _transform8(self, row): return None
|
454 |
+
def _transform9(self, row): return None
|
455 |
+
|
456 |
+
def _transform10(self, data):
|
457 |
+
"""
|
458 |
+
Transforms input data (DataFrame or NumPy array) to features for BlendProperty10 prediction.
|
459 |
+
|
460 |
+
If input is a DataFrame, selects 'ComponentX_fraction' (X=1-5) and 'ComponentX_Property10' (X=1-5).
|
461 |
+
If input is a NumPy array, assumes the columns are already in the correct order:
|
462 |
+
Component1-5_fraction, Component1-5_Property1, Component1-5_Property2, ..., Component1-5_Property10
|
463 |
+
and selects the relevant columns for Property10.
|
464 |
+
|
465 |
+
Args:
|
466 |
+
data: pandas DataFrame or numpy array.
|
467 |
+
|
468 |
+
Returns:
|
469 |
+
numpy array of transformed features.
|
470 |
+
"""
|
471 |
+
fraction_cols = [f'Component{i+1}_fraction' for i in range(5)]
|
472 |
+
property_cols = [f'Component{i+1}_Property10' for i in range(5)]
|
473 |
+
required_cols = fraction_cols + property_cols
|
474 |
+
|
475 |
+
if isinstance(data, pd.DataFrame):
|
476 |
+
try:
|
477 |
+
features = data[required_cols]
|
478 |
+
except KeyError as e:
|
479 |
+
missing_col = str(e).split("'")[1]
|
480 |
+
raise ValueError(f"Input DataFrame is missing required column: {missing_col}") from e
|
481 |
+
|
482 |
+
elif isinstance(data, np.ndarray):
|
483 |
+
# Assume the NumPy array has columns in the specified order
|
484 |
+
# Select the first 5 columns (fractions) and columns for Property10 (indices 50 to 54)
|
485 |
+
if data.shape[1] < 55: # Need at least 5 fractions and 5 properties for each of Property1-10
|
486 |
+
raise ValueError(f"Input NumPy array must have at least 55 columns for this transformation.")
|
487 |
+
|
488 |
+
# Selecting columns based on the assumed order: fractions (0-4), properties (5-9) for P1, ..., (50-54) for P10
|
489 |
+
features = np.concatenate([data[:, :5], data[:, 50:55]], axis=1)
|
490 |
+
|
491 |
+
else:
|
492 |
+
raise TypeError("Input data must be a pandas DataFrame or a numpy array.")
|
493 |
+
|
494 |
+
return features
|
495 |
+
|
496 |
+
|
497 |
+
|
498 |
+
def generate_mixture_features(self,data):
|
499 |
+
"""
|
500 |
+
Generate symmetric and weighted nonlinear interactions between fuel weights and properties.
|
501 |
+
The input 'data' should contain weights in the first 5 columns/elements and properties in the next 5.
|
502 |
+
|
503 |
+
:param data: np.ndarray, pd.DataFrame, or list of shape (n_samples, 10) or (10,)
|
504 |
+
:return: pd.DataFrame with generated features.
|
505 |
+
"""
|
506 |
+
# Convert input to numpy array and handle single row/list input
|
507 |
+
if isinstance(data, pd.DataFrame):
|
508 |
+
data_array = data.values
|
509 |
+
elif isinstance(data, list):
|
510 |
+
data_array = np.array(data)
|
511 |
+
elif isinstance(data, np.ndarray):
|
512 |
+
data_array = data
|
513 |
+
else:
|
514 |
+
raise TypeError("Input data must be a pandas DataFrame, numpy array, or list.")
|
515 |
+
|
516 |
+
# Reshape single row/list input to 2D array
|
517 |
+
if data_array.ndim == 1:
|
518 |
+
data_array = data_array.reshape(1, -1)
|
519 |
+
|
520 |
+
# Ensure the input has 10 columns (5 weights + 5 properties)
|
521 |
+
if data_array.shape[1] != 10:
|
522 |
+
raise ValueError("Input data must have 10 columns/elements (5 weights and 5 properties).")
|
523 |
+
|
524 |
+
# Separate weights and properties
|
525 |
+
W = data_array[:, :5]
|
526 |
+
P = data_array[:, 5:]
|
527 |
+
|
528 |
+
|
529 |
+
n_samples, n_fuels = W.shape
|
530 |
+
features = {}
|
531 |
+
|
532 |
+
# Original weights and properties
|
533 |
+
for i in range(n_fuels):
|
534 |
+
features[f'w{i+1}'] = W[:, i]
|
535 |
+
features[f'p{i+1}'] = P[:, i]
|
536 |
+
features[f'w{i+1}_p{i+1}'] = W[:, i] * P[:, i] # weighted property
|
537 |
+
|
538 |
+
# --- 1. Weighted sum of properties ---
|
539 |
+
features['weighted_sum'] = np.sum(W * P, axis=1)
|
540 |
+
|
541 |
+
# --- 2. Weighted square of properties ---
|
542 |
+
features['weighted_sum_sq'] = np.sum(W * P**2, axis=1)
|
543 |
+
|
544 |
+
# --- 3. Weighted tanh of properties ---
|
545 |
+
features['weighted_tanh'] = np.sum(W * np.tanh(P), axis=1)
|
546 |
+
|
547 |
+
# --- 4. Weighted exponential ---
|
548 |
+
# features['weighted_exp'] = np.sum(W * np.exp(P), axis=1)
|
549 |
+
# Clip P before exponential to avoid overflow
|
550 |
+
safe_exp = np.exp(np.clip(P, a_min=None, a_max=50)) # 50 is safe upper bound
|
551 |
+
features['weighted_exp'] = np.sum(W * safe_exp, axis=1)
|
552 |
+
|
553 |
+
|
554 |
+
# --- 5. Weighted logarithm (clip to avoid -inf) ---
|
555 |
+
# features['weighted_log'] = np.sum(W * np.log(np.clip(P, 1e-6, None)), axis=1)
|
556 |
+
features['weighted_log'] = np.sum(W * np.log(np.clip(P, 1e-6, None)), axis=1)
|
557 |
+
|
558 |
+
|
559 |
+
# --- 6. Pairwise interactions (symmetric, weighted) ---
|
560 |
+
for i, j in combinations(range(n_fuels), 2):
|
561 |
+
pij = P[:, i] * P[:, j]
|
562 |
+
wij = W[:, i] * W[:, j]
|
563 |
+
features[f'pair_p{i+1}p{j+1}'] = pij
|
564 |
+
features[f'weighted_pair_p{i+1}p{j+1}'] = pij * wij
|
565 |
+
|
566 |
+
# --- 7. Triple interactions (weighted & symmetric) ---
|
567 |
+
for i, j, k in combinations(range(n_fuels), 3):
|
568 |
+
pij = P[:, i] * P[:, j] * P[:, k]
|
569 |
+
wij = W[:, i] * W[:, j] * W[:, k]
|
570 |
+
features[f'triplet_p{i+1}{j+1}{k+1}'] = pij
|
571 |
+
features[f'weighted_triplet_p{i+1}{j+1}{k+1}'] = pij * wij
|
572 |
+
|
573 |
+
# --- 8. Power series + weight modulated ---
|
574 |
+
for power in [2, 3, 4]:
|
575 |
+
features[f'power_sum_{power}'] = np.sum(W * P**power, axis=1)
|
576 |
+
|
577 |
+
# --- 9. Log-weighted property (prevent log(0)) ---
|
578 |
+
logW = np.log(np.clip(W, 1e-6, None))
|
579 |
+
features['log_weighted_p'] = np.sum(logW * P, axis=1)
|
580 |
+
|
581 |
+
# --- 10. Symmetric polynomial combinations (elementary symmetric) ---
|
582 |
+
# Up to degree 5 (since you have 5 fuels)
|
583 |
+
for r in range(1, 6):
|
584 |
+
key = f'e_sym_poly_r{r}'
|
585 |
+
val = np.zeros(n_samples)
|
586 |
+
for idx in combinations(range(n_fuels), r):
|
587 |
+
prod_p = np.prod(P[:, idx], axis=1)
|
588 |
+
val += prod_p
|
589 |
+
features[key] = val
|
590 |
+
|
591 |
+
# --- 11. Weighted interaction difference (symmetry in differences) ---
|
592 |
+
for i, j in combinations(range(n_fuels), 2):
|
593 |
+
diff = P[:, i] - P[:, j]
|
594 |
+
wdiff = W[:, i] * W[:, j]
|
595 |
+
features[f'weighted_diff_p{i+1}{j+1}'] = diff * wdiff
|
596 |
+
|
597 |
+
# --- 12. Mean, max, min (weighted) ---
|
598 |
+
total_weight = np.sum(W, axis=1, keepdims=True)
|
599 |
+
weighted_mean = np.sum(W * P, axis=1) / np.clip(total_weight.squeeze(), 1e-6, None)
|
600 |
+
features['weighted_mean'] = weighted_mean
|
601 |
+
features['max_prop'] = np.max(P, axis=1)
|
602 |
+
features['min_prop'] = np.min(P, axis=1)
|
603 |
+
|
604 |
+
# --- 13. Weighted cross-log terms ---
|
605 |
+
for i, j in combinations(range(n_fuels), 2):
|
606 |
+
log_mix = np.log(np.clip(P[:, i] + P[:, j], 1e-6, None))
|
607 |
+
wij = W[:, i] * W[:, j]
|
608 |
+
features[f'logsum_p{i+1}{j+1}'] = log_mix * wij
|
609 |
+
|
610 |
+
# --- 14. Inverse + weighted inverse ---
|
611 |
+
# features['inv_prop_sum'] = np.sum(W / np.clip(P, 1e-6, None), axis=1)
|
612 |
+
features['inv_prop_sum'] = np.sum(W / np.clip(P, 1e-6, None), axis=1)
|
613 |
+
|
614 |
+
|
615 |
+
# --- 15. Weighted relu (max(p, 0)) ---
|
616 |
+
relu = np.maximum(P, 0)
|
617 |
+
features['weighted_relu'] = np.sum(W * relu, axis=1)
|
618 |
+
|
619 |
+
# --- 16. Weighted sin/cos transforms ---
|
620 |
+
features['weighted_sin'] = np.sum(W * np.sin(P), axis=1)
|
621 |
+
features['weighted_cos'] = np.sum(W * np.cos(P), axis=1)
|
622 |
+
|
623 |
+
# --- 17. Normalized properties ---
|
624 |
+
prop_sum = np.sum(P, axis=1, keepdims=True)
|
625 |
+
normalized_P = P / np.clip(prop_sum, 1e-6, None)
|
626 |
+
for i in range(n_fuels):
|
627 |
+
features[f'norm_p{i+1}'] = normalized_P[:, i]
|
628 |
+
|
629 |
+
# --- 18. Product of all p's and all w's ---
|
630 |
+
features['total_product_p'] = np.prod(P, axis=1)
|
631 |
+
features['total_product_w'] = np.prod(W, axis=1)
|
632 |
+
|
633 |
+
# --- 19. Mixed entropic form ---
|
634 |
+
# entropy_like = -np.sum(W * np.log(np.clip(W, 1e-6, None)), axis=1)
|
635 |
+
# features['entropy_weights'] = entropy_like
|
636 |
+
|
637 |
+
# Convert to DataFrame
|
638 |
+
df = pd.DataFrame(features)
|
639 |
+
|
640 |
+
return df
|
requirements.txt
CHANGED
@@ -1,3 +1,13 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
tabpfn-extensions @ git+https://github.com/PriorLabs/tabpfn-extensions.git@16e0e4f4305a3546eab5be6ebf163ff41bd3843d
|
2 |
+
scikit-learn==1.5.1
|
3 |
+
huggingface_hub
|
4 |
+
autogluon
|
5 |
+
tabpfn==2.0.9
|
6 |
+
streamlit==1.43.0
|
7 |
+
numpy==1.26.4
|
8 |
+
pandas==2.2.3
|
9 |
+
matplotlib==3.10.0
|
10 |
+
matplotlib-inline==0.1.7
|
11 |
+
seaborn==0.13.2
|
12 |
+
torch @ https://download.pytorch.org/whl/cu124/torch-2.6.0%2Bcu124-cp311-cp311-linux_x86_64.whl
|
13 |
+
setuptools
|
setup.sh
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
python download_models.py
|
streamlit_app.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app.py
|
2 |
+
import streamlit as st
|
3 |
+
import pkg_resources
|
4 |
+
|
5 |
+
st.title("📦 Installed Python Modules")
|
6 |
+
|
7 |
+
# Get all installed packages
|
8 |
+
packages = sorted(
|
9 |
+
[(d.project_name, d.version) for d in pkg_resources.working_set],
|
10 |
+
key=lambda x: x[0].lower()
|
11 |
+
)
|
12 |
+
|
13 |
+
# Display them
|
14 |
+
for name, version in packages:
|
15 |
+
st.write(f"{name} — {version}")
|