File size: 5,562 Bytes
2bffc21
 
 
6c15b41
 
 
 
09ec91f
6c15b41
45b2ac8
 
 
6c15b41
 
 
45b2ac8
 
 
 
6c15b41
 
 
 
45b2ac8
6c15b41
45b2ac8
 
 
 
 
 
 
 
 
 
6c15b41
 
45b2ac8
6c15b41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45b2ac8
6c15b41
45b2ac8
 
6c15b41
 
 
 
 
45b2ac8
6c15b41
45b2ac8
6c15b41
 
 
45b2ac8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c15b41
45b2ac8
 
6c15b41
 
45b2ac8
 
 
 
 
 
 
 
 
 
 
 
6c15b41
45b2ac8
 
 
2bffc21
09ec91f
2bffc21
 
6c15b41
2bffc21
6c15b41
 
2bffc21
6c15b41
 
 
 
2bffc21
6c15b41
 
 
45b2ac8
 
 
2bffc21
6c15b41
 
 
 
 
 
45b2ac8
 
 
2bffc21
 
6c15b41
45b2ac8
6c15b41
 
 
 
45b2ac8
6c15b41
45b2ac8
6c15b41
 
 
 
 
 
 
 
 
 
 
 
45b2ac8
 
6c15b41
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import torch
import torch.nn.functional as F
from torch.optim import Adam
from torch.utils.data import DataLoader, Dataset
from pymongo import MongoClient
from transformers import BertTokenizer, BertModel
import numpy as np

# MongoDB Atlas 연결 설정
client = MongoClient(
    "mongodb+srv://waseoke:rookies3@cluster0.ps7gq.mongodb.net/test?retryWrites=true&w=majority"
)
db = client["two_tower_model"]
train_dataset = db["train_dataset"]

# KoBERT 모델 및 토크나이저 로드
tokenizer = BertTokenizer.from_pretrained('monologg/kobert')
model = BertModel.from_pretrained('monologg/kobert')


# 상품 임베딩 함수
def embed_product_data(product):
    """
    상품 데이터를 KoBERT로 임베딩하는 함수.
    """
    text = (
        product.get("product_name", "") + " " + product.get("product_description", "")
    )
    inputs = tokenizer(
        text, return_tensors="pt", truncation=True, padding=True, max_length=128
    )
    outputs = model(**inputs)
    embedding = (
        outputs.last_hidden_state.mean(dim=1).detach().numpy().flatten()
    )  # 평균 풀링
    return embedding


# PyTorch Dataset 정의
class TripletDataset(Dataset):
    def __init__(self, dataset):
        self.dataset = dataset

    def __len__(self):
        return len(self.dataset)

    def __getitem__(self, idx):
        data = self.dataset[idx]
        anchor = torch.tensor(data["anchor_embedding"], dtype=torch.float32)
        positive = torch.tensor(data["positive_embedding"], dtype=torch.float32)
        negative = torch.tensor(data["negative_embedding"], dtype=torch.float32)
        return anchor, positive, negative


# MongoDB에서 데이터셋 로드 및 임베딩 변환
def prepare_training_data(verbose=False):
    dataset = list(train_dataset.find())
    if not dataset:
        raise ValueError("No training data found in MongoDB.")

    # Anchor, Positive, Negative 임베딩 생성
    embedded_dataset = []
    for idx, entry in enumerate(dataset):
        try:
            # Anchor, Positive, Negative 데이터 임베딩
            anchor_embedding = embed_product_data(entry["anchor"]["product"])
            positive_embedding = embed_product_data(entry["positive"]["product"])
            negative_embedding = embed_product_data(entry["negative"]["product"])

            # 임베딩 확인 (옵션으로 출력)
            if verbose:
                print(f"Sample {idx + 1}:")
                print(
                    f"Anchor Embedding: {anchor_embedding[:5]}... (shape: {anchor_embedding.shape})"
                )
                print(
                    f"Positive Embedding: {positive_embedding[:5]}... (shape: {positive_embedding.shape})"
                )
                print(
                    f"Negative Embedding: {negative_embedding[:5]}... (shape: {negative_embedding.shape})"
                )

            # 임베딩 결과 저장
            embedded_dataset.append(
                {
                    "anchor_embedding": anchor_embedding,
                    "positive_embedding": positive_embedding,
                    "negative_embedding": negative_embedding,
                }
            )
        except Exception as e:
            print(f"Error embedding data at sample {idx + 1}: {e}")

    return TripletDataset(embedded_dataset)


# 데이터셋 검증용 함수
def validate_embeddings():
    """
    데이터셋 임베딩을 생성하고 각 임베딩의 일부를 출력하여 확인.
    """
    print("Validating embeddings...")
    triplet_dataset = prepare_training_data(verbose=True)
    print(f"Total samples: {len(triplet_dataset)}")
    return triplet_dataset


# Triplet Loss를 학습시키는 함수
def train_triplet_model(
    product_model, train_loader, num_epochs=10, learning_rate=0.001, margin=0.05
):
    optimizer = Adam(product_model.parameters(), lr=learning_rate)

    for epoch in range(num_epochs):
        product_model.train()
        total_loss = 0

        for anchor, positive, negative in train_loader:
            optimizer.zero_grad()

            # Forward pass
            anchor_vec = product_model(anchor)
            positive_vec = product_model(positive)
            negative_vec = product_model(negative)

            # Triplet loss 계산
            positive_distance = F.pairwise_distance(anchor_vec, positive_vec)
            negative_distance = F.pairwise_distance(anchor_vec, negative_vec)
            triplet_loss = torch.clamp(
                positive_distance - negative_distance + margin, min=0
            ).mean()

            # 역전파와 최적화
            triplet_loss.backward()
            optimizer.step()

            total_loss += triplet_loss.item()

        print(
            f"Epoch {epoch + 1}/{num_epochs}, Loss: {total_loss / len(train_loader):.4f}"
        )

    return product_model


# 모델 학습 파이프라인
def main():
    # 모델 초기화 (예시 모델)
    product_model = torch.nn.Sequential(
        torch.nn.Linear(768, 256),  # 768: KoBERT 임베딩 차원
        torch.nn.ReLU(),
        torch.nn.Linear(256, 128),
    )

    # 데이터 준비
    triplet_dataset = prepare_training_data()
    train_loader = DataLoader(triplet_dataset, batch_size=16, shuffle=True)

    # 모델 학습
    trained_model = train_triplet_model(product_model, train_loader)

    # 학습된 모델 저장
    torch.save(trained_model.state_dict(), "product_model.pth")
    print("Model training completed and saved.")
    print(validate_embeddings())


if __name__ == "__main__":
    main()