Spaces:
Sleeping
Sleeping
Update train_model.py
Browse files- train_model.py +27 -14
train_model.py
CHANGED
|
@@ -1,16 +1,29 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
negative_vec = product_model(negative_data)
|
| 6 |
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
negative_distance = F.pairwise_distance(anchor_vec, negative_vec)
|
| 10 |
-
triplet_loss = torch.clamp(positive_distance - negative_distance + margin, min=0).mean()
|
| 11 |
-
|
| 12 |
-
# 역전파와 최적화
|
| 13 |
-
triplet_loss.backward()
|
| 14 |
-
optimizer.step()
|
| 15 |
|
| 16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn.functional as F
|
| 3 |
+
from torch.optim import Adam
|
| 4 |
+
from torch.utils.data import DataLoader
|
|
|
|
| 5 |
|
| 6 |
+
def train_triplet_model(product_model, anchor_data, positive_data, negative_data, num_epochs=10, learning_rate=0.001, margin=1.0):
|
| 7 |
+
optimizer = Adam(product_model.parameters(), lr=learning_rate)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
+
for epoch in range(num_epochs):
|
| 10 |
+
product_model.train()
|
| 11 |
+
optimizer.zero_grad()
|
| 12 |
+
|
| 13 |
+
# Forward pass
|
| 14 |
+
anchor_vec = product_model(anchor_data)
|
| 15 |
+
positive_vec = product_model(positive_data)
|
| 16 |
+
negative_vec = product_model(negative_data)
|
| 17 |
+
|
| 18 |
+
# Triplet loss calculation
|
| 19 |
+
positive_distance = F.pairwise_distance(anchor_vec, positive_vec)
|
| 20 |
+
negative_distance = F.pairwise_distance(anchor_vec, negative_vec)
|
| 21 |
+
triplet_loss = torch.clamp(positive_distance - negative_distance + margin, min=0).mean()
|
| 22 |
+
|
| 23 |
+
# Backward pass and optimization
|
| 24 |
+
triplet_loss.backward()
|
| 25 |
+
optimizer.step()
|
| 26 |
+
|
| 27 |
+
print(f"Epoch {epoch + 1}, Loss: {triplet_loss.item()}")
|
| 28 |
+
|
| 29 |
+
return product_model
|