File size: 46,044 Bytes
f17cc6c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16efa64
f17cc6c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
edd2adf
999bdca
 
 
4e5dd03
 
 
 
 
 
1955b4b
f17cc6c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e5dd03
 
04c66c2
 
d2a125c
f17cc6c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04df557
 
 
 
f17cc6c
19b3dae
 
f17cc6c
19b3dae
 
 
 
 
f17cc6c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
#
# This is the server logic of a Shiny web application. You can run the
# application by clicking 'Run App' above.
#
# Find out more about building applications with Shiny here:
#
#    http://shiny.rstudio.com/
#
###########3 devtools::install_github("apache/arrow/r", ref = "tags/apache-arrow-14.0.0", subdir = "arrow/r")


source("./server-helper.R")

shinyServer(function(input, output, session) {
    options(shiny.verbose = TRUE)
    #options(shiny.error = function() {
    #    traceback()
    #    stopApp()
    #})
  
    ######################
    #  REACTIVES VALUES  #
    ######################
    
    # Reactive values created to update the current range of the main slider input
    #slider_range <- reactiveValues(min_value = 1, max_value = 2)
    
    # Reactive value created to keep updated the selected precomputed clusters_labels artifact
    precomputed_clusters <- reactiveValues(selected = NULL)
    
    
    # Reactive value created to keep updated the selected clustering option
    clustering_options <- reactiveValues(selected = "no_clusters")
    
    
    # Reactive value created to configure the graph brush
    ranges <- reactiveValues(x = NULL, y = NULL)
    
    
    # Reactive value created to configure clusters options
    clusters_config <- reactiveValues(
        metric_hdbscan = DEFAULT_VALUES$metric_hdbscan,
        min_cluster_size_hdbscan = DEFAULT_VALUES$min_cluster_size_hdbscan,
        min_samples_hdbscan = DEFAULT_VALUES$min_samples_hdbscan,
        cluster_selection_epsilon_hdbscan = DEFAULT_VALUES$cluster_selection_epsilon_hdbscan
    )
    
    # Reactive values created to configure the appearance of the projections graph.
    config_style <- reactiveValues(
        path_line_size = DEFAULT_VALUES$path_line_size,
        path_alpha = DEFAULT_VALUES$path_alpha,
        point_alpha = DEFAULT_VALUES$point_alpha,
        point_size = DEFAULT_VALUES$point_size
    )
    
    # Reactive value created to store time series selected variables
    ts_variables <- reactiveValues(selected = NULL)
    
    # Reactive value created to store the encoder_input
    X <- reactiveVal()

    # Reactive value created to store encoder artifact stride
    enc_ar_stride <- eventReactive(enc_ar(), {
        stride = ceiling(enc_ar()$metadata$stride/2)
    })

    # Time series artifact
    ts_ar <- eventReactive(
        input$dataset, 
    {
        req(input$dataset)
        ar <- api$artifact(input$dataset, type='dataset')
        on.exit({print("eventReactive ts_ar -->"); flush.console()})
        ar
    }, label = "ts_ar")


    # Reactive value for indexing saved projections plot
    prj_plot_id <- reactiveVal(0)
    
    #################################
    #  OBSERVERS & OBSERVERS EVENTS #
    #################################
    observeEvent(
        req(exists("encs_l")), 
        {
            freezeReactiveValue(input, "dataset")
            print("observeEvent encoders list enc_l | update dataset list | after freeze")
            updateSelectizeInput(
                session = session,
                inputId = "dataset",
                choices = encs_l %>% 
                map(~.$metadata$train_artifact) %>% 
                set_names()
            )
            on.exit({print("observeEvent encoders list encs_l | update dataset list -->"); flush.console()})
        }, 
        label = "input_dataset"
    )
    
    observeEvent(input$dataset, {
        #req(encs_l)
        print("--> observeEvent input_dataset | update encoder list")
        print(input$dataset)
        freezeReactiveValue(input, "encoder")
        print(paste0("observeEvent input_dataset | update encoders for dataset ", input$dataset))
        updateSelectizeInput(
            session = session,
            inputId = "encoder",
            choices = encs_l %>% 
            keep(~ .$metadata$train_artifact == input$dataset) %>% 
            #map(~ .$metadata$enc_artifact) %>% 
            names
        )
        ### TODO: Ver cómo poner bien esta ñapa para que no se actualizen los gráficos antes que el stride
        updateSliderInput(session, "stride", value = 0)
        ################
        on.exit(
            {print("observeEvent input_dataset | update encoder list -->"); flush.console()}
        )
    }, label = "input_encoder")
        
    observeEvent(
        input$encoder, 
        {
            #req(input$dataset, encs_l)
            #enc_ar = req(enc_ar())
            print("--> observeEvent input_encoder | update wlen")
            freezeReactiveValue(input, "wlen")
            print("observeEvent input_encoder | update wlen | Before enc_ar")
            enc_ar = enc_ar()
            print(paste0("observeEvent input_encoder | update wlen | enc_ar: ", enc_ar))
            print("observeEvent input_encoder | update wlen | Set wlen slider values")
            if (is.null(enc_ar$metadata$mvp_ws)) {
                print("observeEvent input_encoder | update wlen | Set wlen slider values from w | ")
                enc_ar$metadata$mvp_ws = c(enc_ar$metadata$w, enc_ar$metadata$w)
            }
            print(paste0("observeEvent input_encoder | update wlen | enc_ar$metadata$mvp_ws ", enc_ar$metadata$mvp_ws ))
            wmin <- enc_ar$metadata$mvp_ws[1]
            wmax <- enc_ar$metadata$mvp_ws[2]
            wlen <- enc_ar$metadata$w
            print(paste0("observeEvent input_encoder | update wlen | Update slider input (", wmin, ", ", wmax, " ) -> ", wlen ))
            updateSliderInput(session = session, inputId = "wlen",
                min = wmin,
                max = wmax,
                value = wlen
            )
            updateSliderInput(
                session = session, inputId = "stride", 
                min = 1, max = input$wlen, 
                value = enc_ar_stride()
            )
            on.exit({print("observeEvent input_encoder | update wlen -->"); flush.console()})
        }
    )

    # Obtener el valor de stride
    enc_ar_stride = reactive({
        print("--> reactive enc_ar_stride")
        stride = ceiling(enc_ar()$metadata$mvp_ws[2]/2)  #<- enc_ar()$metadata$stride
        on.exit({print(paste0("reactive_enc_ar_stride | --> ", stride)); flush.console()})
        stride
    })
        
    observeEvent(input$wlen, {
        req(input$wlen)
        print(paste0("--> observeEvent input_wlen | update slide stride value | wlen ",  input$wlen))
        tryCatch({
            old_value = input$stride
            if (input$stride == 0 | input$stride == 1){
                old_value = enc_ar_stride()
                print(paste0("enc_ar_stride: ", old_value))
            }
            freezeReactiveValue(input, "stride")
            print(paste0("oserveEvent input_wlen | update slide stride value | Update stride to ", old_value))
            updateSliderInput(
                session = session, inputId = "stride", 
                min = 1, max = input$wlen, 
                value = ifelse(old_value <= input$wlen, old_value, 1)
            )
            }, 
            error = function(e){
                print(paste0("observeEvent input_wlen | update slide stride value | Error | ", e$message))
            }, 
            warning = function(w) {
                message(paste0("observeEvent input_wlen | update slide stride value | Warning | ", w$message))
            }
        )
        on.exit({print(paste0( 
            "observeEvent input_wlen | update slide stride value | Finally |  wlen min ",  
            1, " max ", input$wlen, " current value ", input$stride, " -->")); flush.console()})
    })

    # Update "metric_hdbscan" selectInput when the app is loaded
    observe({
        updateSelectInput(
            session = session,
            inputId = "metric_hdbscan",
            choices = names(req(hdbscan_metrics))
        )
    })
    # Update the range of point selection when there is new data
    # observeEvent(X(), {
    #   #max_ = ts_ar()$metadata$TS$n_samples
    #   max_ = dim(X())[[1]]
    #   freezeReactiveValue(input, "points_emb")
    #   updateSliderInput(session = session, inputId = "points_emb",
    #                     min = 1, max = max_, value = c(1, max_))
    # })

    # Update selected time series variables and update interface config
    observeEvent(tsdf(), {
        print("--> observeEvent tsdf | update select variables")
        on.exit({print("--> observeEvent tsdf | update select variables -->"); flush.console()})
        freezeReactiveValue(input, "select_variables")
        #ts_variables$selected = names(tsdf())[names(tsdf()) != "timeindex"]
        ts_variables$selected = names(isolate(tsdf()))
        print(paste0("observeEvent tsdf | select variables ", ts_variables$selected))
        updateCheckboxGroupInput(
            session = session,
            inputId = "select_variables",
            choices = ts_variables$selected,
            selected = ts_variables$selected
        )
    }, label = "select_variables")
        
    # Update precomputed_clusters reactive value when the input changes
    observeEvent(input$clusters_labels_name, {
        print("--> observe | precomputed_cluster selected ")
        precomputed_clusters$selected <- req(input$clusters_labels_name)
        print(paste0("observe | precomputed_cluster selected --> | ", precomputed_cluster$selected))
    })
    
    
    # Update clustering_options reactive value when the input changes
    observe({
        print("--> Observe clustering options")
        clustering_options$selected <- req(input$clustering_options)
        print("Observe clustering options -->")
    })
    
    # Update clusters_config reactive values when user clicks on "calculate_clusters" button
    observeEvent(input$calculate_clusters, {
        print("--> observe event calculate_clusters | update clusters_config")
        clusters_config$metric_hdbscan <- req(input$metric_hdbscan)
        clusters_config$min_cluster_size_hdbscan <- req(input$min_cluster_size_hdbscan)
        clusters_config$min_samples_hdbscan <- req(input$min_samples_hdbscan)
        clusters_config$cluster_selection_epsilon_hdbscan <- req(input$cluster_selection_epsilon_hdbscan)
        #on.exit({print("observe event calculate_clusters | update clusters_config -->"))
    })
    
    
    # Observe the events related to zoom the projections graph
    observeEvent(input$zoom_btn, {
        
        print("--> observeEvent zoom_btn")
        brush <- input$projections_brush
        if (!is.null(brush)) {
            if(isTRUE(input$zoom_btn)){
                ranges$x <- c(brush$xmin, brush$xmax)
                ranges$y <- c(brush$ymin, brush$ymax)
            }else {
                ranges$x <- NULL
                ranges$y <- NULL
            }
            
        } else {
            ranges$x <- NULL
            ranges$y <- NULL
        }
    })
    
    
    # Observe the events related to change the appearance of the projections graph
    observeEvent(input$update_prj_graph,{
        style_values <- list(path_line_size = input$path_line_size ,
                             path_alpha = input$path_alpha,
                             point_alpha = input$point_alpha,
                             point_size = input$point_size)
        
        if (!is.null(style_values)) {
            config_style$path_line_size <- style_values$path_line_size
            config_style$path_alpha <- style_values$path_alpha
            config_style$point_alpha <- style_values$point_alpha
            config_style$point_size <- style_values$point_size
        } else {
            config_style$path_line_size <- NULL
            config_style$path_alpha <- NULL
            config_style$point_alpha <- NULL
            config_style$point_size <- NULL
        }
    })
    
    
    # Update ts_variables reactive value when time series variable selection changes
    observeEvent(input$select_variables, {
        ts_variables$selected <- input$select_variables
    })
    
    
    # Observe to check/uncheck all variables
    observeEvent(input$selectall,{
        req(tsdf)
        ts_variables$selected <- names(isolate(tsdf()))
        if(input$selectall %%2 == 0){
            updateCheckboxGroupInput(session = session, 
                                     inputId = "select_variables",
                                     choices = ts_variables$selected, 
                                     selected = ts_variables$selected)
        } else {
            updateCheckboxGroupInput(session = session, 
                                     inputId = "select_variables",
                                     choices = ts_variables$selected, 
                                     selected = NULL)
        }
    })
    # Observe to update encoder input (enc_input = X())
    observe({ #Event(input$dataset, input$encoder, input$wlen, input$stride, {
    req(input$wlen != 0, input$stride != 0, input$stride != 1)
    print(paste0("Check reactiveness | X |  wlen, stride |"))
        if (
            is.null(X()) ||
            !identical(
                input$dataset, isolate(input$dataset)) || 
                !identical(input$encoder, isolate(input$encoder)) || 
                input$wlen != isolate(input$wlen) || 
                input$stride != isolate(input$stride)
        ) {
            print("--> ReactiveVal X | Update Sliding Window")
            print(paste0("reactive X | wlen ", input$wlen, " | stride ", input$stride, " | Let's prepare data"))
            print("reactive X | SWV")
            
            t_x_0 <- Sys.time()
        
            enc_input = dvats$exec_with_feather_k_output(
                function_name = "prepare_forecasting_data",
                module_name   = "tsai.data.preparation",
                path = file.path(DEFAULT_PATH_WANDB_ARTIFACTS, ts_ar()$metadata$TS$hash),
                k_output = as.integer(0),
                print_flag = TRUE,
                time_flag = TRUE,
                fcst_history = input$wlen
            )

            t_x_1 <- Sys.time()
            t_sliding_window_view = t_x_1 - t_x_0
            print(paste0("reactive X | SWV: ", t_sliding_window_view, " secs "))
            
            print(paste0("reactive X | Update sliding window | Apply stride ", input$stride," | enc_input ~ ", dim(enc_input), "-->"))
            print("| Update | X" )
            on.exit({print("| Outside| X"); flush.console()})
            X(enc_input)
        }
        X()
    })
        
    ###############
    #  REACTIVES  #
    ###############
    
    # Get timeseries artifact metadata
    ts_ar_config = reactive({
        print("--> reactive ts_ar_config | List used artifacts")
        ts_ar = req(ts_ar())
        print(paste0("reactive ts_ar_config | List used artifacts | hash", ts_ar$hash))
        list_used_arts = ts_ar$metadata$TS
        list_used_arts$vars = ts_ar$metadata$TS$vars %>% stringr::str_c(collapse = "; ")
        list_used_arts$name = ts_ar$name
        list_used_arts$aliases = ts_ar$aliases
        list_used_arts$artifact_name = ts_ar$name
        list_used_arts$id = ts_ar$id
        list_used_arts$created_at = ts_ar$created_at
        list_used_arts
        on.exit({print("reactive ts_ar_config -->"); flush.console()})
    })
        
    # Get encoder artifact
    enc_ar <- eventReactive (
        input$encoder, 
        {
            print(paste0("eventReactive enc_ar | Enc. Artifact: ", input$encoder))
            result <- tryCatch({
                api$artifact(input$encoder, type = 'learner')
            }, error = function(e){
                print(paste0("eventReactive enc_ar | Error: ", e$message))
                NULL
            })
            on.exit({print("envent reactive enc_ar -->"); flush.console()})
            result
        }, 
        ignoreInit = T
    )
   
   # Encoder
    enc <- eventReactive(
        enc_ar(), 
    {
        req(input$dataset, input$encoder)
        print("--> eventReactive enc | load encoder ")
        encoder_artifact <- enc_ar()
        #Añadido para Jacinto
        path = file.path(DEFAULT_PATH_WANDB_ARTIFACTS, encoder_artifact$metadata$ref$hash)
        print(paste0("Reactive enc |  Load object ", path ))
        flush.console()
        #enc_dir= encoder_artifact$download()
        #print(paste0("Reactive enc |  Load object | enc dir | Test sin root ", enc_dir ))
        #enc_dir = encoder_artifact$download(
        #    root=DEFAULT_PATH_WANDB_ARTIFACTS
        #)
        #print(paste0("Reactive enc |  Load object | enc dir ", enc_dir ))
        print(paste0("eventReactive enc | load encoder | Enc. Artifact: ", input$encoder))
        enc <- py_load_object(
            file.path(
                DEFAULT_PATH_WANDB_ARTIFACTS, 
                encoder_artifact$metadata$ref$hash
            )
        )
        on.exit({print("eventReactive enc | load encoder -->"); flush.console()})
        enc
    })

    
    
    embs <- reactive({
        req(X(), enc_l <- enc())
        print("--> reactive embs | get embeddings")
        if (torch$cuda$is_available()){
            print(paste0("CUDA devices: ", torch$cuda$device_count()))
          } else {
            print("CUDA NOT AVAILABLE")
        }
        t_embs_0 <- Sys.time()
        print(
            paste0(
                "reactive embs | get embeddings | Just about to get embedings. Device number: ", 
                torch$cuda$current_device() 
            )
        )
        
        print("reactive embs | get embeddings | Get batch size and dataset")

        dataset_logged_by <- enc_ar()$logged_by()
        bs = dataset_logged_by$config$batch_size
        stride = input$stride 
        
        print(paste0("reactive embs | get embeddings (set stride set batch size) | Stride ", input$stride, " | batch size: ", bs ))
        enc_input = X()
        #chunk_max = 10000000
        #shape <- dim(enc_input)
        #print(paste0("reactive embs | get embeddings (set stride set batch size) | enc_input shape: ", shape ))
        #chunk_size_ = min(shape[1]*shape[2],chunk_max/(shape[1]*shape[2]))
        #N = max(3200,floor(chunk_size_/32))
        chunk_size = 10000000 #N*32
        #print(paste0("reactive embs | get embeddings (set stride set batch size) | Chunk_size ", chunk_size, " | shape[1]*shape[2]: ", shape[1]*shape[2] ))
        print(paste0("reactive embs | get embeddings (set stride set batch size) | Chunk_size ", chunk_size))
        #        python_string = paste0("
        #import dvats.all   
        cpu_flag = ifelse(input$cpu_flag == "CPU", TRUE, FALSE)
        result = dvats$get_enc_embs_set_stride_set_batch_size(
            X = X(),
            print_flag = TRUE,
            enc_learn = enc_l,
            stride =  input$stride,  
            batch_size = bs, 
            cpu = cpu_flag, 
            print_flag = FALSE, 
            time_flag = TRUE, 
            chunk_size = chunk_size,
            check_memory_usage = TRUE
        )
       
        #result <- system(python_string)
        t_embs_1 <- Sys.time()
        diff <- t_embs_1 - t_embs_0
        diff_secs <- as.numeric(diff, units = "secs")
        diff_mins <- as.numeric(diff, units = "mins")
        print(paste0("get_enc_embs total time: ", diff_secs, " secs thus ", diff_mins, " mins"))
        X <- NULL
        gc(verbose=TRUE)
        on.exit({print("reactive embs | get embeddings -->"); flush.console()})
        result
    })

 prj_object_cpu <- reactive({
        embs = req(embs(), input$dr_method)
        embs = embs[complete.cases(embs),]
        print("--> prj_object")
        #print(embs) #--
        #print(paste0("--> prj_object | UMAP params ", str(umap_params_)))
        print("--> prj_object | UMAP params ")
        
        res = switch( input$dr_method,
            #### Comprobando parametros para saber por qué salen diferentes los embeddings
            ######### Comprobando los parámetros
            #UMAP = dvats$get_UMAP_prjs(input_data = embs, cpu=F, n_neighbors = 15, min_dist = 0.1, random_state=as.integer(1234)),
            UMAP = dvats$get_UMAP_prjs(
                input_data  = embs, 
                cpu         = TRUE, 
                print_flag  = TRUE,
                n_neighbors = input$prj_n_neighbors, 
                min_dist    = input$prj_min_dist, 
                random_state= as.integer(input$prj_random_state)
            ),
            TSNE = dvats$get_TSNE_prjs(
                X = embs, 
                cpu = TRUE, 
                random_state=as.integer(input$prj_random_state)
            ),
            PCA = dvats$get_PCA_prjs(
                X = embs, 
                cpu = TRUE, 
                random_state=as.integer(input$prj_random_state)
            )
        )
      res = res %>% as.data.frame # TODO: This should be a matrix for improved efficiency
      colnames(res) = c("xcoord", "ycoord")
      on.exit({print(" prj_object -->"); flush.console()})
      flush.console()
      #browser()
      res
    })

    prj_object <- reactive({
        req(embs(), input$dr_method)
        print("--> prj_object")
        t_prj_0 = Sys.time()
        embs = req(embs())
        print("prj_object | Before complete cases ")
        embs = embs[complete.cases(embs),]
        #print(embs) #--
        #print(paste0("--> prj_object | UMAP params ", str(umap_params_)))
        print("prj_object | Before switch ")
        
        cpu_flag = ifelse(input$cpu_flag == "CPU", TRUE, FALSE)

        res = switch( input$dr_method,
            #### Comprobando parametros para saber por qué salen diferentes los embeddings
            ######### Comprobando los parámetros
            #UMAP = dvats$get_UMAP_prjs(input_data = embs, cpu=F, n_neighbors = 15, min_dist = 0.1, random_state=as.integer(1234)),
            UMAP = dvats$get_UMAP_prjs(
                input_data  = embs, 
                cpu         = cpu_flag, 
                print_flag  = TRUE,
                n_neighbors = input$prj_n_neighbors, 
                min_dist    = input$prj_min_dist, 
                random_state= as.integer(input$prj_random_state)
            ),
            TSNE = dvats$get_TSNE_prjs(
                X = embs, 
                cpu=FALSE, 
                random_state=as.integer(input$prj_random_state)
            ),
            PCA = dvats$get_PCA_prjs(
                X = embs, 
                cpu=FALSE, 
                random_state=as.integer(input$prj_random_state)
            )
        )
      res = res %>% as.data.frame # TODO: This should be a matrix for improved efficiency
      colnames(res) = c("xcoord", "ycoord")
      t_prj_1 = Sys.time()
      on.exit({print(paste0(" prj_object | ", t_prj_1-t_prj_0, " seconds -->")); flush.console()})
      flush.console()
      res
    })
    

    
    # Load and filter TimeSeries object from wandb
    tsdf <- reactive(
        {    
            req(input$encoder, ts_ar())
            ts_ar <- req(ts_ar())
            print(paste0("--> Reactive tsdf | ts artifact ", ts_ar))
            flush.console()
                        
            t_init <- Sys.time()
            path = file.path(DEFAULT_PATH_WANDB_ARTIFACTS, ts_ar$metadata$TS$hash)
            print(paste0("Reactive tsdf | Read feather ", path ))
            flush.console()
            #artifact_dir = ts_ar$download(root=DEFAULT_PATH_WANDB_ARTIFACTS)
            #print(paste0("Reactive tsdf | Read feather | Downloaded: ", artifact_dir))
            print(system('ls -la /.artifacts', intern=TRUE))
            print(system('ls -la /.artifacts/mvp-SWV:v1', intern=TRUE))
            df <- read_feather(path, as_data_frame = TRUE, mmap = FALSE) %>% rename('timeindex' = `__index_level_0__`) 
            t_end = Sys.time()
            print(paste0("Reactive tsdf | Read feather | Execution time: ", t_end - t_init, " seconds"))
            flush.console()

            t_end = Sys.time()
            on.exit({print(paste0("Reactive tsdf | Column to index | Execution time: ", t_end - t_init, " seconds"));flush.console()})
            df
        })
    
    # Auxiliary object for the interaction ts->projections
    tsidxs_per_embedding_idx <- reactive({
      req(input$wlen != 0, input$stride != 0)
      get_window_indices(1:nrow(isolate(projections())), w = input$wlen, s = input$stride)
    })
    
    # Filter the embedding points and calculate/show the clusters if conditions are met.
    projections <- reactive({
        print("--> Projections")
        req(prj_object(), input$dr_method)
        #prjs <- req(prj_object()) %>% slice(input$points_emb[[1]]:input$points_emb[[2]])
        print("Projections | before prjs")
        prjs <- prj_object()
        req(input$dataset, input$encoder, input$wlen, input$stride)
        print("Projections | before switch")
        switch(clustering_options$selected,
            precomputed_clusters = {
               filename <- req(selected_clusters_labels_ar())$metadata$ref$hash
               clusters_labels <- py_load_object(filename = file.path(DEFAULT_PATH_WANDB_ARTIFACTS, filename))
               #prjs$cluster <- clusters_labels[input$points_emb[[1]]:input$points_emb[[2]]]
               prjs$cluster <- clusters_labels
            },
            calculate_clusters = {
                clusters = hdbscan$HDBSCAN(
                    min_cluster_size = as.integer(clusters_config$min_cluster_size_hdbscan),
                    min_samples = as.integer(clusters_config$min_samples_hdbscan),
                    cluster_selection_epsilon = clusters_config$cluster_selection_epsilon_hdbscan,
                    metric = clusters_config$metric_hdbscan
                )$fit(prjs)
                score = 0
                unique_labels <- unique(clusters$labels_)
                total_unique_labels <- length(unique_labels)
                if(total_unique_labels > 1){
                score = dvats$cluster_score(prjs, clusters$labels_, TRUE)
                }
                print(paste0("Projections | Score ", score))
                if (score <= 0) {
                    print(paste0("Projections | Repeat projections with CPU because of low quality clusters | score ", score))
                    prjs <- prj_object_cpu()
                    clusters = hdbscan$HDBSCAN(
                        min_cluster_size = as.integer(clusters_config$min_cluster_size_hdbscan),
                        min_samples = as.integer(clusters_config$min_samples_hdbscan),
                        cluster_selection_epsilon = clusters_config$cluster_selection_epsilon_hdbscan,
                        metric = clusters_config$metric_hdbscan
                    )$fit(prjs)
                    score = 0
                    unique_labels <- unique(clusters$labels_)
                    total_unique_labels <- length(unique_labels)
                    if(total_unique_labels > 1){
                    score = dvats$cluster_score(prjs, clusters$labels_, TRUE)
                    }
                    print(paste0("Projections | Repeat projections with CPU because of low quality clusters | score ", score))
                }
                prjs$cluster <- clusters$labels_


             })
        
        on.exit({print("Projections -->"); flush.console()})
      prjs
    })
    
    # Update the colour palette for the clusters
    update_palette <- reactive({
        prjs <- req(projections())
        if ("cluster" %in% names(prjs)) {
            unique_labels <- unique(prjs$cluster)
            print(unique_labels)
            ## IF the value "-1" exists, assign the first element of mycolors to #000000, if not, assign the normal colorRampPalette
            if (as.integer(-1) %in% unique_labels) 
                colour_palette <- append("#000000", colorRampPalette(brewer.pal(12,"Paired"))(length(unique_labels)-1))
            else 
                colour_palette <- colorRampPalette(brewer.pal(12,"Paired"))(length(unique_labels))
        }
        else
            colour_palette <- "red"
        
        colour_palette
    })
    
    color_palete_window_plot <- colorRampPalette(
        colors = c("blue", "green"),
        space = "Lab" # Option used when colors do not represent a quantitative scale
    )

    start_date <- reactive({
        isolate(tsdf())$timeindex[1]
    })

    end_date <- reactive({
        end_date_id = 100000
        end_date_id = min(end_date_id, nrow(isolate(tsdf())))
        isolate(tsdf())$timeindex[end_date_id]
    })

    ts_plot_base <- reactive({
        print("--> ts_plot_base")
        on.exit({print("ts_plot_base -->"); flush.console()})
        start_date =isolate(start_date())
        end_date = isolate(end_date())
        print(paste0("ts_plot_base | start_date: ", start_date, " end_date: ", end_date))
        t_init <- Sys.time()
        tsdf_ <- isolate(tsdf()) %>% select(ts_variables$selected, - "timeindex")
        tsdf_xts <- xts(tsdf_, order.by = tsdf()$timeindex)
        t_end <- Sys.time()
        print(paste0("ts_plot_base | tsdf_xts time", t_end-t_init)) 
        print(head(tsdf_xts))
        print(tail(tsdf_xts))
        ts_plt = dygraph(
            tsdf_xts,
            width="100%", height = "400px"
        ) %>% 
        dyRangeSelector(c(start_date, end_date)) %>% 
        dyHighlight(hideOnMouseOut = TRUE) %>%
        dyOptions(labelsUTC = FALSE  ) %>%
        dyCrosshair(direction = "vertical")%>%
        dyLegend(show = "follow", hideOnMouseOut = TRUE) %>%
        dyUnzoom() %>%
        dyHighlight(highlightSeriesOpts = list(strokeWidth = 3)) %>%
        dyCSS(
            textConnection(
                ".dygraph-legend > span { display: none; }
                .dygraph-legend > span.highlight { display: inline; }"
            )
        ) 

    })

    embedding_ids <- reactive({
        print("--> embedding idx")
        on.exit(print("embedding idx -->"))
        bp = brushedPoints(prj_object(), input$projections_brush, allRows = TRUE) #%>% debounce(miliseconds) #Wait 1 seconds: 1000
        bp %>% rownames_to_column("index") %>% dplyr::filter(selected_ == TRUE) %>% pull(index) %>% as.integer
    })

    window_list <- reactive({
        print("--> window_list")
        on.exit(print("window_list -->"))
        # Get the window indices
        req(length(embedding_ids() > 0))
        embedding_idxs = embedding_ids()
        window_indices = get_window_indices(embedding_idxs, input$wlen, input$stride)
        # Put all the indices in one list and remove duplicates
        unlist_window_indices = unique(unlist(window_indices))
        # Calculate a vector of differences to detect idx where a new window should be created 
        diff_vector <- diff(unlist_window_indices,1)
        # Take indexes where the difference is greater than one (that represent a change of window)
        idx_window_limits <- which(diff_vector!=1)
        # Include the first and last index to have a whole set of indexes.
        idx_window_limits <- c(1, idx_window_limits, length(unlist_window_indices))
        # Create a reduced window list
        reduced_window_list <-  vector(mode = "list", length = length(idx_window_limits)-1)
        # Populate the first element of the list with the idx of the first window.
        reduced_window_list[[1]] = c(
            isolate(tsdf())$timeindex[unlist_window_indices[idx_window_limits[1]+1]],
            isolate(tsdf())$timeindex[unlist_window_indices[idx_window_limits[2]]]
        ) 
        # Populate the rest of the list
      if (length(idx_window_limits) > 2) {
          for (i in 2:(length(idx_window_limits)-1)){
            reduced_window_list[[i]]<- c(
              isolate(tsdf())$timeindex[unlist_window_indices[idx_window_limits[i]+1]],
              isolate(tsdf())$timeindex[unlist_window_indices[idx_window_limits[i+1]]]
             )
          }
        }
        reduced_window_list
    })
    

    # Generate timeseries data for dygraph dygraph
    ts_plot <- reactive({
        print("--> ts_plot | Before req 1")
        on.exit({print("ts_plot -->"); flush.console()})

        req(tsdf(), ts_variables, input$wlen != 0, input$stride)

        ts_plt = ts_plot_base()   

        print("ts_plot | bp")
        #miliseconds <-  ifelse(nrow(tsdf()) > 1000000, 2000, 1000)
        
        #if (!is.data.frame(bp)) {bp = bp_}
        print("ts_plot | embedings idxs ")
        embedding_idxs = embedding_ids()
        # Calculate windows if conditions are met (if embedding_idxs is !=0, that means at least 1 point is selected)
        print("ts_plot | Before if")
        if ((length(embedding_idxs)!=0) & isTRUE(input$plot_windows)) {
            reduced_window_list = req(window_list())
            print(paste0("ts_plot | reduced_window_list[1] = ", reduced_window_list[1]))
            start_indices = min(sapply(reduced_window_list, function(x) x[1]))
            end_indices = max(sapply(reduced_window_list, function(x) x[2]))

            view_size = end_indices-start_indices+1
            max_size = 10000

            start_date = isolate(tsdf())$timeindex[start_indices]
            end_date = isolate(tsdf())$timeindex[end_indices]

            print(paste0("ts_plot | reuced_window_list (", start_date, end_date, ")", "view size ", view_size, "max size ", max_size))
            
            if (view_size > max_size) {
                end_date = isolate(tsdf())$timeindex[start_indices + max_size - 1]
                #range_color = "#FF0000" # Red
            } 
            
            range_color = "#CCEBD6" # Original
            

            # # Plot the windows
            count = 0
            for(ts_idxs in reduced_window_list) {
                count = count + 1
                start_event_date = isolate(tsdf())$timeindex[head(ts_idxs, 1)]
                end_event_date = isolate(tsdf())$timeindex[tail(ts_idxs, 1)]
                ts_plt <- ts_plt %>% dyShading(
                    from = start_event_date,
                    to = end_event_date,
                    color = range_color
                ) 
            ts_plt <- ts_plt %>% dyRangeSelector(c(start_date, end_date))
                #%>% dyEvent(
                #    start_event_date, 
                #    label = paste0("SW-", count), 
                #    labelLoc="bottom" ,
                #    strokePattern = "solid",
                #    color = range_color 
                #    ) %>% dyEvent(
                #    end_event_date, 
                #    label = paste0("SW-",paste0("SW-", count), 
                #    labelLoc="bottom",
                #    strokePattern = "solid"),
                #    color = range_color
                #    )

            }   
            
            ts_plt <- ts_plt
            # NOTE: This code block allows you to plot shadyng at once. 
            #       The traditional method has to plot the dygraph n times 
            #       (n being the number of rectangles to plot). With the adjacent
            #       code it is possible to plot the dygraph only once. Currently
            #       it does not work well because there are inconsistencies in the
            #       timezones of the time series and shiny (there is a two-hour shift[the current plot method works well]),
            #       which does not allow this method to be used correctly. If that
            #       were fixed in the future everything would work fine.
            # num_rects <- length(reduced_window_list)
            # rects_ini <- vector(mode = "list", length = num_rects)
            # rects_fin <- vector(mode = "list", length = num_rects)
            # for(i in 1:num_rects) {
            #     rects_ini[[i]] <- head(reduced_window_list[[i]],1)
            #     rects_fin[[i]] <- tail(reduced_window_list[[i]],1)
            # }
            # ts_plt <- vec_dyShading(ts_plt,rects_ini, rects_fin,"red", rownames(tsdf()))
        }
        
        ts_plt
    })
    
    # Get projections plot name for saving
    prjs_plot_name <- reactive({
        dataset_name <- basename(input$dataset)
        encoder_name <- basename(input$encoder)
        get_prjs_plot_name(dataset_name, encoder_name, clustering_options$selected, prjs_$cluster, prj_plot_id, input)
    })
    
    # Get timeserie plot name for saving
    ts_plot_name <- reactive({
        dataset_name <- basename(input$dataset)
        encoder_name <- basename(input$encoder)
        get_ts_plot_name(dataset_name, encoder_name, prj_plot_id, input)
    })

    #############
    #  OUTPUTS  #
    #############

        output$windows_plot <- renderPlot({
        req(length(embedding_ids()) > 0)
        reduced_window_list = req(window_list())

        # Convertir a fechas POSIXct
        reduced_window_df <- do.call(rbind, lapply(reduced_window_list, function(x) {
            data.frame(
                start = as.POSIXct(isolate(tsdf())$timeindex[x[1]], origin = "1970-01-01"),
                end = as.POSIXct(isolate(tsdf())$timeindex[x[2]], origin = "1970-01-01")
            )
        }))

        # Establecer límites basados en los datos
        first_date = min(reduced_window_df$start)
        last_date = max(reduced_window_df$end)
    
        left = as.POSIXct(isolate(tsdf())$timeindex[1],  origin = "1970-01-01")
        right = as.POSIXct(isolate(tsdf())$timeindex[nrow(isolate(tsdf()))], origin = "1970-01-01")

        # Configuración del gráfico base
        par(mar = c(5, 4, 4, 0) + 0.1)  #Down Up Left Right
        plt <- plot(
            NA, 
            xlim = c(left, right), 
            ylim = c(0, 1), 
            type = "n", 
            xaxt = "n", yaxt = "n", 
            xlab = "", ylab = "", 
            bty = "n")
            f = "%F %H:%M:%S"
            axis(1, at = as.numeric(c(left, right)), labels = c(format(first_date, f), format(last_date, f)), cex.axis = 0.7)

            # Añadir líneas verticales
            colors = color_palete_window_plot(2)
            abline(
                v = as.numeric(reduced_window_df$start), 
                col =  rep(colors, length.out = nrow(reduced_window_df)),
                lwd = 1
            )
            abline(
                v = as.numeric(reduced_window_df$end), 
                col =  rep(colors, length.out = nrow(reduced_window_df)),
                lwd = 1
            )
            segments(
                x0 = as.numeric(reduced_window_df$start),
                x1 = as.numeric(reduced_window_df$end),
                y0 = 0,
                y1 = 0,
                col =  rep(colors, length.out = nrow(reduced_window_df)),
                lwd = 1
            )
            text(
                x = as.numeric(reduced_window_df$start),
                y = 0,
                srt = 90,
                adj = c(1,0.5),
                labels =  paste0("SW-", seq_len(nrow(reduced_window_df)), format(reduced_window_df$start, f)), 
                cex = 1,
                xpd = TRUE,
                col = rep(colors, length.out = nrow(reduced_window_df))
            )

            points(x = as.numeric(left),y = 0, col = "black", pch = 20, cex = 1)
            points(x = as.numeric(right),y = 0, col = "black", pch = 20, cex = 1)
            plt
        }, 
        height=200
    )  

    output$windows_text <- renderUI({
        req(length(embedding_ids()) > 0)
        reduced_window_list = req(window_list())

        # Crear un conjunto de etiquetas de texto con información de las ventanas
        window_info <- lapply(1:length(reduced_window_list), function(i) {
            window <- reduced_window_list[[i]]
            start <- format(as.POSIXct(isolate(tsdf())$timeindex[window[1]], origin = "1970-01-01"), "%b %d")
            end <- format(as.POSIXct(isolate(tsdf())$timeindex[window[2]], origin = "1970-01-01"), "%b %d")
            color <- ifelse(i %% 2 == 0, "green", "blue")
            HTML(paste0("<div style='color: ", color, "'>Window ", i, ": ", start, " - ", end, "</div>"))
        })

        # Devuelve todos los elementos de texto como una lista de HTML
        do.call(tagList, window_info)
    })
    
    # Generate encoder info table
    output$enc_info = renderDataTable({
        selected_encoder_name <- req(input$encoder)
        on.exit({print("Encoder artiffact -->"); flush.console()})
        print(paste0("--> Encoder artiffact", selected_encoder_name))
        selected_encoder <- encs_l[[selected_encoder_name]]
        encoder_metadata <- req(selected_encoder$metadata)
        print(paste0("Encoder artiffact | encoder metadata ", selected_encoder_name))
        encoder_metadata %>%enframe()
            })
    
    # Generate time series info table
    output$ts_ar_info = renderDataTable({
        ts_ar_config() %>% enframe()
    })



    
       
    # Generate projections plot
    output$projections_plot <- renderPlot({
        req(input$dataset, input$encoder, input$wlen != 0, input$stride != 0)
        print("--> Projections_plot")
        prjs_ <- req(projections())
        print("projections_plot | Prepare column highlights")
        # Prepare the column highlight to color data
        if (!is.null(input$ts_plot_dygraph_click)) {
            selected_ts_idx = which(ts_plot()$x$data[[1]] == input$ts_plot_dygraph_click$x_closest_point)
            projections_idxs = tsidxs_per_embedding_idx() %>% map_lgl(~ selected_ts_idx %in% .)
            prjs_$highlight = projections_idxs
        } else {
            prjs_$highlight = FALSE
        }
        # Prepare the column highlight to color data. If input$generate_cluster has not been clicked
        # the column cluster will not exist in the dataframe, so we create with the value FALSE
        if(!("cluster" %in% names(prjs_)))
            prjs_$cluster = FALSE
        print("projections_plot | GoGo Plot!")
        plt <- ggplot(data = prjs_) + 
            aes(x = xcoord, y = ycoord, fill = highlight, color = as.factor(cluster)) + 
            scale_colour_manual(name = "clusters", values = req(update_palette())) +
            geom_point(shape = 21,alpha = config_style$point_alpha, size = config_style$point_size) + 
            scale_shape(solid = FALSE) +
            #geom_path(size=config_style$path_line_size, colour = "#2F3B65",alpha = config_style$path_alpha) + 
            guides() + 
            scale_fill_manual(values = c("TRUE" = "green", "FALSE" = "NA"))+
            coord_cartesian(xlim = ranges$x, ylim = ranges$y, expand = TRUE)+
            theme_void() + 
            theme(legend.position = "none")
        
        if (input$show_lines){
            #plt <- plt + geom_path(size=config_style$path_line_size, colour = "#2F3B65",alpha = config_style$path_alpha)
            plt <- plt + geom_path(linewidth=config_style$path_line_size, colour = "#2F3B65",alpha = config_style$path_alpha)
        }

        observeEvent(input$savePlot, {
            plt <- plt + theme(plot.background = element_rect(fill = "white"))
            ggsave(filename = prjs_plot_name(), plot = plt, path = "../data/plots/")
        })
        #observeEvent(c(input$dataset, input$encoder, clustering_options$selected), {   
            #req(input$dataset, input$encoder)
            #print("!-- CUDA?: ", torch$cuda$is_available())
            #prjs_ <- req(projections())
            #filename <- prjs_plot_name()
            #print(paste("saving embedding plot to ",filename))
            #ggsave(filename = filename, plot = plt, path="../data/plots/") 
            #print("Embeding plot saved")
        #})
        
        plt
    })
    
    
    # Render projections plot
    output$projections_plot_ui <- renderUI(
        {
            plotOutput(
                "projections_plot", 
                click = "projections_click",
                brush = "projections_brush",
                height = input$embedding_plot_height
            ) %>% withSpinner()
        }
    )
        
    # Render information about the selected point in the time series graph
    output$point <- renderText({
        req(input$ts_plot_dygraph_click$x_closest_point)
        ts_idx = which(ts_plot()$ts$x$data[[1]] == input$ts_plot_dygraph_click$x_closest_point)
        paste0('X = ', strftime(req(input$ts_plot_dygraph_click$x_closest_point), "%F %H:%M:%S"), 
               '; Y = ', req(input$ts_plot_dygraph_click$y_closest_point),
               '; X (raw) = ', req(input$ts_plot_dygraph_click$x_closest_point))
    })
    
    # Render information about the selected point and brush in the projections graph
    output$projections_plot_interaction_info <- renderText({
        xy_str <- function(e) {
            if(is.null(e)) return("NULL\n")
            paste0("x=", round(e$x, 1), " y=", round(e$y, 1), "\n")
        }
        xy_range_str <- function(e) {
            if(is.null(e)) return("NULL\n")
            paste0("xmin=", round(e$xmin, 1), " xmax=", round(e$xmax, 1), 
                   " ymin=", round(e$ymin, 1), " ymax=", round(e$ymax, 1))
        }
        paste0(
            "click: ", xy_str(input$projections_click),
            "brush: ", xy_range_str(input$projections_brush)
        )
    })
        
    # Generate time series plot
    output$ts_plot_dygraph <- renderDygraph(
        {
            req (
                input$dataset, 
                input$encoder,
                input$wlen != 0, 
                input$stride != 0
            )
            #print("Saving time series plot")
            ts_plot <- req(ts_plot())
            #save_path <- file.path("..", "data", "plots", ts_plot_name())
            #htmlwidgets::saveWidget(ts_plot, file = save_path, selfcontained=TRUE)
            #print(paste0("Time series plot saved to", save_path))
            ts_plot
            #req(ts_plot())
        }   
    )


    prjs_plot_name <- reactive({
        dataset_name <- basename(input$dataset)
        encoder_name <- basename(input$encoder)
        get_prjs_plot_name(dataset_name, encoder_name, clustering_options$selected, prjs_$cluster)
    })
    
    ts_plot_name <- reactive({
        dataset_name <- basename(input$dataset)
        encoder_name <- basename(input$encoder)
        get_ts_plot_name(dataset_name, encoder_name)
    })
    
})