Spaces:
Paused
Paused
from scipy.ndimage import median_filter | |
import json | |
import numpy as np | |
from pathlib import Path | |
LOW = 250 | |
HIGH = 4000 | |
FPS = 100 | |
BIN_FREQS = [ | |
43.06640625, 64.599609375, 86.1328125, 107.666015625, 129.19921875, 150.732421875, 172.265625, 193.798828125, | |
215.33203125, 236.865234375, 258.3984375, 279.931640625, 301.46484375, 322.998046875, 344.53125, 366.064453125, | |
387.59765625, 409.130859375, 430.6640625, 452.197265625, 495.263671875, 516.796875, 538.330078125, 581.396484375, | |
624.462890625, 645.99609375, 689.0625, 732.12890625, 775.1953125, 839.794921875, 882.861328125, 925.927734375, | |
990.52734375, 1055.126953125, 1098.193359375, 1184.326171875, 1248.92578125, 1313.525390625, 1399.658203125, | |
1485.791015625, 1571.923828125, 1658.056640625, 1765.72265625, 1873.388671875, 1981.0546875, 2088.720703125, | |
2217.919921875, 2347.119140625, 2497.8515625, 2627.05078125, 2799.31640625, 2950.048828125, 3143.84765625, | |
3316.11328125, 3509.912109375, 3725.244140625, 3940.576171875, 4177.44140625, 4435.83984375, 4694.23828125, | |
4974.169921875, 5275.634765625, 5577.099609375, 5921.630859375, 6266.162109375, 6653.759765625, 7041.357421875, | |
7450.48828125, 7902.685546875, 8376.416015625, 8871.6796875, 9388.4765625, 9948.33984375, 10551.26953125, | |
11175.732421875, 11843.26171875, 12553.857421875, 13285.986328125, 14082.71484375, 14922.509765625, 15805.37109375 | |
] | |
BIN_FREQS = np.array(BIN_FREQS).round().astype(int) | |
def to_uint8_list(arr): | |
"""Converts a numpy array to a list of uint8 values.""" | |
scaled_arr = (arr * 255).astype(np.uint8) | |
return scaled_arr.tolist() | |
def apply_to_dict(d, func): | |
"""Recursively applies func to the leaf values of a nested dictionary.""" | |
for key, value in d.items(): | |
if isinstance(value, dict): | |
apply_to_dict(value, func) | |
else: | |
d[key] = func(value) | |
def convert_segments(input_data): | |
segments_output = [] | |
labels_output = [] | |
# Extracting segments and appending to the respective lists | |
for segment in input_data.segments: | |
segments_output.append(segment.start) | |
labels_output.append(segment.label) | |
# Appending the end time of the last segment | |
segments_output.append(input_data.segments[-1].end) | |
return {"segments": segments_output, "labels": labels_output} | |
def process(specs, struct, name): | |
i_low = np.flatnonzero(BIN_FREQS < LOW) | |
i_high = np.flatnonzero(BIN_FREQS > HIGH) | |
i_mid = np.flatnonzero((LOW <= BIN_FREQS) & (BIN_FREQS <= HIGH)) | |
# Compute the max energy value for each frequency band considering all instruments. | |
max_low = specs[:, :, i_low].max() | |
max_mid = specs[:, :, i_mid].max() | |
max_high = specs[:, :, i_high].max() | |
wavs_low, wavs_mid, wavs_high = [ | |
specs[:, :, indices].mean(axis=-1) | |
# spec[:, indices].mean(axis=1) | |
for indices in [i_low, i_mid, i_high] | |
] | |
wavs_low /= max_low | |
wavs_mid /= max_mid | |
wavs_high /= max_high | |
assert wavs_low.max() <= 1.0 | |
assert wavs_mid.max() <= 1.0 | |
assert wavs_high.max() <= 1.0 | |
navs_low = np.array([median_filter(wav, size=FPS) for wav in wavs_low]) | |
navs_mid = np.array([median_filter(wav, size=FPS) for wav in wavs_mid]) | |
navs_high = np.array([median_filter(wav, size=FPS) for wav in wavs_high]) | |
navs_low = navs_low | |
navs_mid = navs_low + navs_mid | |
navs_high = navs_mid + navs_high | |
max_nav = np.max([navs_low.max(), navs_mid.max(), navs_high.max()]) | |
navs_low /= max_nav | |
navs_mid /= max_nav | |
navs_high /= max_nav | |
assert navs_high.max() <= 1.0 | |
data = { | |
'nav': {}, | |
'wav': {}, | |
} | |
for ( | |
eg_low, eg_mid, eg_high, | |
nav_low, nav_mid, nav_high, | |
inst | |
) in zip( | |
wavs_low, wavs_mid, wavs_high, | |
navs_low, navs_mid, navs_high, | |
[ | |
'bass', | |
'drum', | |
'other', | |
'vocal', | |
] | |
): | |
data['wav'][inst] = { | |
'low': eg_low, | |
'mid': eg_mid, | |
'high': eg_high, | |
} | |
data['nav'][inst] = { | |
'low': nav_low, | |
'mid': nav_mid, | |
'high': nav_high, | |
} | |
apply_to_dict(data, to_uint8_list) | |
data['duration'] = specs.shape[1] / FPS | |
data['scores'] = { | |
"segment": { | |
"[email protected]":0, | |
"[email protected]":0, | |
"[email protected]":0, | |
"[email protected]":0, | |
"[email protected]":0, | |
"[email protected]":0, | |
"Ref-to-est deviation":0, | |
"Est-to-ref deviation":0, | |
"Pairwise Precision":0, | |
"Pairwise Recall":0, | |
"Pairwise F-measure":0, | |
"Rand Index":0, | |
"Adjusted Rand Index":0, | |
"Mutual Information":0, | |
"Adjusted Mutual Information":0, | |
"Normalized Mutual Information":0, | |
"NCE Over":0, | |
"NCE Under":0, | |
"NCE F-measure":0, | |
"V Precision":0, | |
"V Recall":0, | |
"V-measure":0, | |
"Accuracy":0 | |
}, | |
"beat": { | |
"f1":0, | |
"precision":0, | |
"recall":0, | |
"cmlt":0, | |
"amlt":0 | |
}, | |
"downbeat": { | |
"f1":0, | |
"precision":0, | |
"recall":0, | |
"cmlt":0, | |
"amlt":0 | |
} | |
} | |
data['id'] = name | |
data['truths'] = {'beats': struct.beats, 'downbeats': struct.downbeats, **convert_segments(struct)} | |
data['inferences'] = data['truths'] | |
filename = f'dissector.{name}.json' | |
with open(filename, 'w') as file: | |
file.write(json.dumps(data)) | |
return filename | |
def generate_dissector_data(name, result): | |
spec_path = Path(f'./spec/{name}.npy').resolve().as_posix() | |
struct_path = Path(f'./struct/{name}.json').resolve().as_posix() | |
specs = np.load(spec_path) | |
return process(specs, result, name) | |