File size: 5,513 Bytes
3ac2113
 
 
e6da193
3ac2113
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37da229
 
 
3ac2113
 
37da229
3ac2113
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37da229
3ac2113
 
ccc5378
3ac2113
 
 
 
 
 
37da229
e6da193
 
 
 
37da229
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
from scipy.ndimage import median_filter
import json
import numpy as np
from pathlib import Path

LOW = 250
HIGH = 4000
FPS = 100

BIN_FREQS = [
  43.06640625, 64.599609375, 86.1328125, 107.666015625, 129.19921875, 150.732421875, 172.265625, 193.798828125,
  215.33203125, 236.865234375, 258.3984375, 279.931640625, 301.46484375, 322.998046875, 344.53125, 366.064453125,
  387.59765625, 409.130859375, 430.6640625, 452.197265625, 495.263671875, 516.796875, 538.330078125, 581.396484375,
  624.462890625, 645.99609375, 689.0625, 732.12890625, 775.1953125, 839.794921875, 882.861328125, 925.927734375,
  990.52734375, 1055.126953125, 1098.193359375, 1184.326171875, 1248.92578125, 1313.525390625, 1399.658203125,
  1485.791015625, 1571.923828125, 1658.056640625, 1765.72265625, 1873.388671875, 1981.0546875, 2088.720703125,
  2217.919921875, 2347.119140625, 2497.8515625, 2627.05078125, 2799.31640625, 2950.048828125, 3143.84765625,
  3316.11328125, 3509.912109375, 3725.244140625, 3940.576171875, 4177.44140625, 4435.83984375, 4694.23828125,
  4974.169921875, 5275.634765625, 5577.099609375, 5921.630859375, 6266.162109375, 6653.759765625, 7041.357421875,
  7450.48828125, 7902.685546875, 8376.416015625, 8871.6796875, 9388.4765625, 9948.33984375, 10551.26953125,
  11175.732421875, 11843.26171875, 12553.857421875, 13285.986328125, 14082.71484375, 14922.509765625, 15805.37109375
]
BIN_FREQS = np.array(BIN_FREQS).round().astype(int)


def to_uint8_list(arr):
    """Converts a numpy array to a list of uint8 values."""
    scaled_arr = (arr * 255).astype(np.uint8)
    return scaled_arr.tolist()


def apply_to_dict(d, func):
    """Recursively applies func to the leaf values of a nested dictionary."""
    for key, value in d.items():
        if isinstance(value, dict):
            apply_to_dict(value, func)
        else:
            d[key] = func(value)

def convert_segments(input_data):
    segments_output = []
    labels_output = []

    # Extracting segments and appending to the respective lists
    for segment in input_data.segments:
        segments_output.append(segment.start)
        labels_output.append(segment.label)

    # Appending the end time of the last segment
    segments_output.append(input_data.segments[-1].end)

    return {"segments": segments_output, "labels": labels_output}


def process(specs, struct, name):  
  i_low = np.flatnonzero(BIN_FREQS < LOW)
  i_high = np.flatnonzero(BIN_FREQS > HIGH)
  i_mid = np.flatnonzero((LOW <= BIN_FREQS) & (BIN_FREQS <= HIGH))
  
  # Compute the max energy value for each frequency band considering all instruments.
  max_low = specs[:, :, i_low].max()
  max_mid = specs[:, :, i_mid].max()
  max_high = specs[:, :, i_high].max()
  
  wavs_low, wavs_mid, wavs_high = [
    specs[:, :, indices].mean(axis=-1)
    # spec[:, indices].mean(axis=1)
    for indices in [i_low, i_mid, i_high]
  ]
  wavs_low /= max_low
  wavs_mid /= max_mid
  wavs_high /= max_high
  assert wavs_low.max() <= 1.0
  assert wavs_mid.max() <= 1.0
  assert wavs_high.max() <= 1.0
  
  navs_low = np.array([median_filter(wav, size=FPS) for wav in wavs_low])
  navs_mid = np.array([median_filter(wav, size=FPS) for wav in wavs_mid])
  navs_high = np.array([median_filter(wav, size=FPS) for wav in wavs_high])
  
  navs_low = navs_low
  navs_mid = navs_low + navs_mid
  navs_high = navs_mid + navs_high
  
  max_nav = np.max([navs_low.max(), navs_mid.max(), navs_high.max()])
  navs_low /= max_nav
  navs_mid /= max_nav
  navs_high /= max_nav
  assert navs_high.max() <= 1.0
  
  data = {
    'nav': {},
    'wav': {},
  }
  
  for (
    eg_low, eg_mid, eg_high,
    nav_low, nav_mid, nav_high,
    inst
  ) in zip(
    wavs_low, wavs_mid, wavs_high,
    navs_low, navs_mid, navs_high,
    [
      'bass',
      'drum',
      'other',
      'vocal',
    ]
  ):
    data['wav'][inst] = {
      'low': eg_low,
      'mid': eg_mid,
      'high': eg_high,
    }
    
    data['nav'][inst] = {
      'low': nav_low,
      'mid': nav_mid,
      'high': nav_high,
    }
  
  apply_to_dict(data, to_uint8_list)
  data['duration'] = specs.shape[1] / FPS

  data['scores'] =   {
    "segment": {
      "[email protected]":0,
      "[email protected]":0,
      "[email protected]":0,
      "[email protected]":0,
      "[email protected]":0,
      "[email protected]":0,
      "Ref-to-est deviation":0,
      "Est-to-ref deviation":0,
      "Pairwise Precision":0,
      "Pairwise Recall":0,
      "Pairwise F-measure":0,
      "Rand Index":0,
      "Adjusted Rand Index":0,
      "Mutual Information":0,
      "Adjusted Mutual Information":0,
      "Normalized Mutual Information":0,
      "NCE Over":0,
      "NCE Under":0,
      "NCE F-measure":0,
      "V Precision":0,
      "V Recall":0,
      "V-measure":0,
      "Accuracy":0
    },
    "beat": {
      "f1":0,
      "precision":0,
      "recall":0,
      "cmlt":0,
      "amlt":0
    },
    "downbeat": {
      "f1":0,
      "precision":0,
      "recall":0,
      "cmlt":0,
      "amlt":0
    }
  }
    
  data['id'] = name

  data['truths'] = {'beats': struct.beats, 'downbeats': struct.downbeats, **convert_segments(struct)}
  data['inferences'] = data['truths']

  filename = f'dissector.{name}.json' 
    
  with open(filename, 'w') as file:
      file.write(json.dumps(data))

  return filename

def generate_dissector_data(name, result):
    spec_path = Path(f'./spec/{name}.npy').resolve().as_posix()
    struct_path = Path(f'./struct/{name}.json').resolve().as_posix()
    
    specs = np.load(spec_path)
    return process(specs, result, name)