vpavlenko commited on
Commit
3ac2113
·
1 Parent(s): d14d2b9

Create dissector.py

Browse files
Files changed (1) hide show
  1. dissector.py +180 -0
dissector.py ADDED
@@ -0,0 +1,180 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from scipy.ndimage import median_filter
2
+ import json
3
+ import numpy as np
4
+
5
+ LOW = 250
6
+ HIGH = 4000
7
+ FPS = 100
8
+
9
+ BIN_FREQS = [
10
+ 43.06640625, 64.599609375, 86.1328125, 107.666015625, 129.19921875, 150.732421875, 172.265625, 193.798828125,
11
+ 215.33203125, 236.865234375, 258.3984375, 279.931640625, 301.46484375, 322.998046875, 344.53125, 366.064453125,
12
+ 387.59765625, 409.130859375, 430.6640625, 452.197265625, 495.263671875, 516.796875, 538.330078125, 581.396484375,
13
+ 624.462890625, 645.99609375, 689.0625, 732.12890625, 775.1953125, 839.794921875, 882.861328125, 925.927734375,
14
+ 990.52734375, 1055.126953125, 1098.193359375, 1184.326171875, 1248.92578125, 1313.525390625, 1399.658203125,
15
+ 1485.791015625, 1571.923828125, 1658.056640625, 1765.72265625, 1873.388671875, 1981.0546875, 2088.720703125,
16
+ 2217.919921875, 2347.119140625, 2497.8515625, 2627.05078125, 2799.31640625, 2950.048828125, 3143.84765625,
17
+ 3316.11328125, 3509.912109375, 3725.244140625, 3940.576171875, 4177.44140625, 4435.83984375, 4694.23828125,
18
+ 4974.169921875, 5275.634765625, 5577.099609375, 5921.630859375, 6266.162109375, 6653.759765625, 7041.357421875,
19
+ 7450.48828125, 7902.685546875, 8376.416015625, 8871.6796875, 9388.4765625, 9948.33984375, 10551.26953125,
20
+ 11175.732421875, 11843.26171875, 12553.857421875, 13285.986328125, 14082.71484375, 14922.509765625, 15805.37109375
21
+ ]
22
+ BIN_FREQS = np.array(BIN_FREQS).round().astype(int)
23
+
24
+
25
+ def to_uint8_list(arr):
26
+ """Converts a numpy array to a list of uint8 values."""
27
+ scaled_arr = (arr * 255).astype(np.uint8)
28
+ return scaled_arr.tolist()
29
+
30
+
31
+ def apply_to_dict(d, func):
32
+ """Recursively applies func to the leaf values of a nested dictionary."""
33
+ for key, value in d.items():
34
+ if isinstance(value, dict):
35
+ apply_to_dict(value, func)
36
+ else:
37
+ d[key] = func(value)
38
+
39
+ def convert_segments(input_data):
40
+ segments_output = []
41
+ labels_output = []
42
+
43
+ # Extracting segments and appending to the respective lists
44
+ for segment in input_data["segments"]:
45
+ segments_output.append(segment["start"])
46
+ labels_output.append(segment["label"])
47
+
48
+ # Appending the end time of the last segment
49
+ segments_output.append(input_data["segments"][-1]["end"])
50
+
51
+ return {"segments": segments_output, "labels": labels_output}
52
+
53
+
54
+ def process(specs, struct, name):
55
+ i_low = np.flatnonzero(BIN_FREQS < LOW)
56
+ i_high = np.flatnonzero(BIN_FREQS > HIGH)
57
+ i_mid = np.flatnonzero((LOW <= BIN_FREQS) & (BIN_FREQS <= HIGH))
58
+
59
+ # Compute the max energy value for each frequency band considering all instruments.
60
+ max_low = specs[:, :, i_low].max()
61
+ max_mid = specs[:, :, i_mid].max()
62
+ max_high = specs[:, :, i_high].max()
63
+
64
+ wavs_low, wavs_mid, wavs_high = [
65
+ specs[:, :, indices].mean(axis=-1)
66
+ # spec[:, indices].mean(axis=1)
67
+ for indices in [i_low, i_mid, i_high]
68
+ ]
69
+ wavs_low /= max_low
70
+ wavs_mid /= max_mid
71
+ wavs_high /= max_high
72
+ assert wavs_low.max() <= 1.0
73
+ assert wavs_mid.max() <= 1.0
74
+ assert wavs_high.max() <= 1.0
75
+
76
+ navs_low = np.array([median_filter(wav, size=FPS) for wav in wavs_low])
77
+ navs_mid = np.array([median_filter(wav, size=FPS) for wav in wavs_mid])
78
+ navs_high = np.array([median_filter(wav, size=FPS) for wav in wavs_high])
79
+
80
+ navs_low = navs_low
81
+ navs_mid = navs_low + navs_mid
82
+ navs_high = navs_mid + navs_high
83
+
84
+ max_nav = np.max([navs_low.max(), navs_mid.max(), navs_high.max()])
85
+ navs_low /= max_nav
86
+ navs_mid /= max_nav
87
+ navs_high /= max_nav
88
+ assert navs_high.max() <= 1.0
89
+
90
+ data = {
91
+ 'nav': {},
92
+ 'wav': {},
93
+ }
94
+
95
+ for (
96
+ eg_low, eg_mid, eg_high,
97
+ nav_low, nav_mid, nav_high,
98
+ inst
99
+ ) in zip(
100
+ wavs_low, wavs_mid, wavs_high,
101
+ navs_low, navs_mid, navs_high,
102
+ [
103
+ 'bass',
104
+ 'drum',
105
+ 'other',
106
+ 'vocal',
107
+ ]
108
+ ):
109
+ data['wav'][inst] = {
110
+ 'low': eg_low,
111
+ 'mid': eg_mid,
112
+ 'high': eg_high,
113
+ }
114
+
115
+ data['nav'][inst] = {
116
+ 'low': nav_low,
117
+ 'mid': nav_mid,
118
+ 'high': nav_high,
119
+ }
120
+
121
+ apply_to_dict(data, to_uint8_list)
122
+ data['duration'] = specs.shape[1] / FPS
123
+
124
+ data['scores'] = {
125
+ "segment": {
126
127
128
129
130
131
132
+ "Ref-to-est deviation":0,
133
+ "Est-to-ref deviation":0,
134
+ "Pairwise Precision":0,
135
+ "Pairwise Recall":0,
136
+ "Pairwise F-measure":0,
137
+ "Rand Index":0,
138
+ "Adjusted Rand Index":0,
139
+ "Mutual Information":0,
140
+ "Adjusted Mutual Information":0,
141
+ "Normalized Mutual Information":0,
142
+ "NCE Over":0,
143
+ "NCE Under":0,
144
+ "NCE F-measure":0,
145
+ "V Precision":0,
146
+ "V Recall":0,
147
+ "V-measure":0,
148
+ "Accuracy":0
149
+ },
150
+ "beat": {
151
+ "f1":0,
152
+ "precision":0,
153
+ "recall":0,
154
+ "cmlt":0,
155
+ "amlt":0
156
+ },
157
+ "downbeat": {
158
+ "f1":0,
159
+ "precision":0,
160
+ "recall":0,
161
+ "cmlt":0,
162
+ "amlt":0
163
+ }
164
+ }
165
+
166
+ data['id'] = name
167
+
168
+ data['truths'] = {'beats': struct['beats'], 'downbeats': struct['downbeats'], **convert_segments(struct)}
169
+ data['inferences'] = data['truths']
170
+
171
+ filename = f'dissector/{name}.json'
172
+
173
+ with open(filename, 'w') as file:
174
+ file.write(json.dumps(data))
175
+
176
+ return filename
177
+
178
+ def generate_dissector_data(name, result):
179
+ specs = np.load(f'spec/{name}.npy')
180
+ return process(specs, result, name)