Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
import requests | |
import pandas as pd | |
from basic_agent import init_agent | |
# (Keep Constants as is) | |
# --- Constants --- | |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
def fetch_questions(): | |
api_url = DEFAULT_API_URL | |
questions_url = f"{api_url}/questions" | |
print(f"Fetching questions from: {questions_url}") | |
try: | |
response = requests.get(questions_url, timeout=15) | |
response.raise_for_status() | |
questions_data = response.json() | |
if not questions_data: | |
print("Fetched questions list is empty.") | |
return "Fetched questions list is empty or invalid format.", None | |
print(f"Fetched {len(questions_data)} questions.") | |
except requests.exceptions.RequestException as e: | |
print(f"Error fetching questions: {e}") | |
return f"Error fetching questions: {e}", None | |
except requests.exceptions.JSONDecodeError as e: | |
print(f"Error decoding JSON response from questions endpoint: {e}") | |
print(f"Response text: {response.text[:500]}") | |
return f"Error decoding server response for questions: {e}", None | |
except Exception as e: | |
print(f"An unexpected error occurred fetching questions: {e}") | |
return f"An unexpected error occurred fetching questions: {e}", None | |
return None, questions_data | |
def run_and_submit_all(submit: bool, max_questions: int | None, profile: gr.OAuthProfile | None): | |
""" | |
Fetches all questions, runs the BasicAgent on them, submits all answers, | |
and displays the results. | |
""" | |
message, questions_data = fetch_questions() | |
# --- Determine HF Space Runtime URL and Repo URL --- | |
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code | |
if profile: | |
username= f"{profile.username}" | |
print(f"User logged in: {username}") | |
else: | |
print("User not logged in.") | |
return "Please Login to Hugging Face with the button.", None | |
api_url = DEFAULT_API_URL | |
submit_url = f"{api_url}/submit" | |
# 1. Instantiate Agent ( modify this part to create your agent) | |
try: | |
agent = init_agent() | |
except Exception as e: | |
print(f"Error instantiating agent: {e}") | |
return f"Error initializing agent: {e}", None | |
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public) | |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" | |
print(agent_code) | |
if max_questions > 0: | |
questions_data = questions_data[:max_questions] # Limit number of questions | |
# 3. Run your Agent | |
results_log = [] | |
answers_payload = [] | |
print(f"Running agent on {len(questions_data)} questions...") | |
for iid, item in enumerate(questions_data): | |
print(f"Running agent on question {iid}") | |
task_id = item.get("task_id") | |
question_text = item.get("question") | |
if not task_id or question_text is None: | |
print(f"Skipping item with missing task_id or question: {item}") | |
continue | |
try: | |
submitted_answer = agent(item) | |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) | |
except Exception as e: | |
print(f"Error running agent on task {task_id}: {e}") | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) | |
if not answers_payload: | |
print("Agent did not produce any answers to submit.") | |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) | |
if not submit: | |
status_update = f"Processed {len(answers_payload)} questions. Submission skipped (submit checkbox unchecked)." | |
print(status_update) | |
return status_update, pd.DataFrame(results_log) | |
# 4. Prepare Submission | |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} | |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." | |
print(status_update) | |
# 5. Submit | |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}") | |
try: | |
response = requests.post(submit_url, json=submission_data, timeout=60) | |
response.raise_for_status() | |
result_data = response.json() | |
final_status = ( | |
f"Submission Successful!\n" | |
f"User: {result_data.get('username')}\n" | |
f"Overall Score: {result_data.get('score', 'N/A')}% " | |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" | |
f"Message: {result_data.get('message', 'No message received.')}" | |
) | |
print("Submission successful.") | |
results_df = pd.DataFrame(results_log) | |
return final_status, results_df | |
except requests.exceptions.HTTPError as e: | |
error_detail = f"Server responded with status {e.response.status_code}." | |
try: | |
error_json = e.response.json() | |
error_detail += f" Detail: {error_json.get('detail', e.response.text)}" | |
except requests.exceptions.JSONDecodeError: | |
error_detail += f" Response: {e.response.text[:500]}" | |
status_message = f"Submission Failed: {error_detail}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except requests.exceptions.Timeout: | |
status_message = "Submission Failed: The request timed out." | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except requests.exceptions.RequestException as e: | |
status_message = f"Submission Failed: Network error - {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except Exception as e: | |
status_message = f"An unexpected error occurred during submission: {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
def fetch_and_run_single(selected_id, questions_data, profile: gr.OAuthProfile | None): | |
if profile: | |
print(f"User logged in: {profile.username}") | |
else: | |
print("User not logged in.") | |
return "Please Login to Hugging Face with the button.", None, None | |
try: | |
index = int(selected_id) | |
question_item = questions_data[index] | |
task_id = question_item.get("task_id") | |
question_text = question_item.get("question") | |
if not task_id or question_text is None: | |
return "Invalid question format received.", None, None | |
except Exception as e: | |
return f"Error selecting question: {e}", None, None | |
agent = init_agent() | |
generated_answer = agent(question_item) | |
result_df = pd.DataFrame([{ | |
"Task ID": task_id, | |
"Question": question_text, | |
"Generated Answer": generated_answer | |
}]) | |
return "Fetched and ran agent on selected question.", result_df, question_item | |
# --- Build Gradio Interface using Blocks --- | |
with (gr.Blocks() as demo): | |
gr.Markdown("# Basic Agent Evaluation Runner") | |
gr.Markdown( | |
""" | |
**Instructions:** | |
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ... | |
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission. | |
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. | |
--- | |
**Disclaimers:** | |
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions). | |
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async. | |
""" | |
) | |
gr.LoginButton() | |
questions_data_state = gr.State() | |
question_ids_state = gr.State() | |
def show_questions(): | |
message, questions_data = fetch_questions() | |
if not questions_data: | |
return pd.DataFrame([{'error': message}]), gr.update(choices=[]), questions_data | |
questions_data.sort(key=lambda item: item['task_id']) | |
for i in range(len(questions_data)): | |
questions_data[i]['ID'] = i | |
df = pd.DataFrame(questions_data) | |
return df, gr.update(choices=list(range(len(df)))), questions_data | |
q_button = gr.Button("Fetch all questions") | |
q_table = gr.DataFrame(label="All Questions", wrap=True) | |
question_id_dropdown = gr.Dropdown(label="Select Question ID to Run", choices=[]) | |
questions_data_state = gr.State() | |
q_button.click( | |
fn=show_questions, | |
inputs=[], | |
outputs=[q_table, question_id_dropdown, questions_data_state] | |
) | |
# NEW BUTTON for single question run | |
gr.Markdown("## Single test run") | |
gr.Markdown("---") | |
single_run_button = gr.Button("Run Single Question") | |
single_question_json = gr.JSON(label="Raw Question JSON") | |
single_status = gr.Textbox(label="Single Question Status", lines=2, interactive=False) | |
single_result_table = gr.DataFrame(label="Single Question and Answer", wrap=True) | |
single_run_button.click( | |
fn=fetch_and_run_single, | |
inputs=[question_id_dropdown, questions_data_state], | |
outputs=[single_status, single_result_table, single_question_json] | |
) | |
# All questions for submission run | |
gr.Markdown("## Run and Submit") | |
submit_checkbox = gr.Checkbox(label="Submit Results?", value=False) | |
max_questions_input = gr.Dropdown( | |
label="Maximum Number of Questions to Process", | |
choices=[0, 1, 2, 5, 10, 20], # 0 to 20 | |
value=0 | |
) | |
run_button = gr.Button("Run Evaluation & Maybe Submit Answers") | |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) | |
# Removed max_rows=10 from DataFrame constructor | |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) | |
run_button.click( | |
fn=run_and_submit_all, | |
inputs=[submit_checkbox, max_questions_input], | |
outputs=[status_output, results_table] | |
) | |
if __name__ == "__main__": | |
print("\n" + "-"*30 + " App Starting " + "-"*30) | |
# Check for SPACE_HOST and SPACE_ID at startup for information | |
space_host_startup = os.getenv("SPACE_HOST") | |
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup | |
if space_host_startup: | |
print(f"✅ SPACE_HOST found: {space_host_startup}") | |
print(f" Runtime URL should be: https://{space_host_startup}.hf.space") | |
else: | |
print("ℹ️ SPACE_HOST environment variable not found (running locally?).") | |
if space_id_startup: # Print repo URLs if SPACE_ID is found | |
print(f"✅ SPACE_ID found: {space_id_startup}") | |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") | |
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") | |
else: | |
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") | |
print("-"*(60 + len(" App Starting ")) + "\n") | |
print("Launching Gradio Interface for Basic Agent Evaluation...") | |
demo.launch(debug=True, share=False) | |