Spaces:
Sleeping
Sleeping
volker
commited on
Commit
·
a9491cd
1
Parent(s):
81917a3
Update agent.
Browse files- .gitignore +16 -0
- ac_tools.py +38 -0
- app.py +130 -40
- basic_agent.py +115 -0
- data/.gitkeep +0 -0
- requirements.txt +8 -2
.gitignore
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Byte-compiled / optimized / DLL files
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
|
6 |
+
# Jupyter Notebook
|
7 |
+
.ipynb_checkpoints
|
8 |
+
|
9 |
+
# Environments
|
10 |
+
.env
|
11 |
+
.venv
|
12 |
+
env/
|
13 |
+
venv/
|
14 |
+
|
15 |
+
!data/.gitkeep
|
16 |
+
data/*
|
ac_tools.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from smolagents import Tool
|
2 |
+
import time
|
3 |
+
import random
|
4 |
+
from duckduckgo_search import DDGS
|
5 |
+
|
6 |
+
|
7 |
+
class DuckDuckGoSearchToolWH(Tool):
|
8 |
+
name = "web_search"
|
9 |
+
description = """Performs a DuckDuckGo web search based on your query (think a Google search) then returns the top search results."""
|
10 |
+
inputs = {"query": {"type": "string", "description": "The search query to perform."}}
|
11 |
+
output_type = "string"
|
12 |
+
|
13 |
+
def __init__(self, max_results=10, **kwargs):
|
14 |
+
super().__init__()
|
15 |
+
self.max_results = max_results
|
16 |
+
self.USER_AGENTS = [
|
17 |
+
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/120.0.0.0 Safari/537.36",
|
18 |
+
"Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:122.0) Gecko/20100101 Firefox/122.0",
|
19 |
+
"Mozilla/5.0 (Macintosh; Intel Mac OS X 13_0) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15",
|
20 |
+
"Mozilla/5.0 (Linux; Android 11; Pixel 5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/120.0.0.0 Mobile Safari/537.36",
|
21 |
+
"Mozilla/5.0 (iPhone; CPU iPhone OS 16_0 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.0 Mobile/15E148 Safari/604.1"
|
22 |
+
]
|
23 |
+
self.kwargs = kwargs
|
24 |
+
self.kwargs.pop('headers', None)
|
25 |
+
|
26 |
+
|
27 |
+
def forward(self, query: str) -> str:
|
28 |
+
headers = {"User-Agent": random.choice(self.USER_AGENTS)}
|
29 |
+
self.ddgs = DDGS(headers=headers, **self.kwargs)
|
30 |
+
time.sleep(2.0)
|
31 |
+
results = self.ddgs.text(query, max_results=self.max_results)
|
32 |
+
if not results:
|
33 |
+
raise Exception("No results found! Try a less restrictive/shorter query.")
|
34 |
+
postprocessed_results = [
|
35 |
+
f"[{result['title']}]({result['href']})\n{result['body']}"
|
36 |
+
for result in results
|
37 |
+
]
|
38 |
+
return "## Search Results\n\n" + "\n\n".join(postprocessed_results)
|
app.py
CHANGED
@@ -1,29 +1,48 @@
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
import requests
|
4 |
-
import inspect
|
5 |
import pandas as pd
|
6 |
|
|
|
|
|
7 |
# (Keep Constants as is)
|
8 |
# --- Constants ---
|
9 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
"""
|
24 |
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
25 |
and displays the results.
|
26 |
"""
|
|
|
27 |
# --- Determine HF Space Runtime URL and Repo URL ---
|
28 |
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
|
29 |
|
@@ -35,12 +54,11 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
35 |
return "Please Login to Hugging Face with the button.", None
|
36 |
|
37 |
api_url = DEFAULT_API_URL
|
38 |
-
questions_url = f"{api_url}/questions"
|
39 |
submit_url = f"{api_url}/submit"
|
40 |
|
41 |
# 1. Instantiate Agent ( modify this part to create your agent)
|
42 |
try:
|
43 |
-
agent =
|
44 |
except Exception as e:
|
45 |
print(f"Error instantiating agent: {e}")
|
46 |
return f"Error initializing agent: {e}", None
|
@@ -48,39 +66,23 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
48 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
49 |
print(agent_code)
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
response = requests.get(questions_url, timeout=15)
|
55 |
-
response.raise_for_status()
|
56 |
-
questions_data = response.json()
|
57 |
-
if not questions_data:
|
58 |
-
print("Fetched questions list is empty.")
|
59 |
-
return "Fetched questions list is empty or invalid format.", None
|
60 |
-
print(f"Fetched {len(questions_data)} questions.")
|
61 |
-
except requests.exceptions.RequestException as e:
|
62 |
-
print(f"Error fetching questions: {e}")
|
63 |
-
return f"Error fetching questions: {e}", None
|
64 |
-
except requests.exceptions.JSONDecodeError as e:
|
65 |
-
print(f"Error decoding JSON response from questions endpoint: {e}")
|
66 |
-
print(f"Response text: {response.text[:500]}")
|
67 |
-
return f"Error decoding server response for questions: {e}", None
|
68 |
-
except Exception as e:
|
69 |
-
print(f"An unexpected error occurred fetching questions: {e}")
|
70 |
-
return f"An unexpected error occurred fetching questions: {e}", None
|
71 |
|
72 |
# 3. Run your Agent
|
73 |
results_log = []
|
74 |
answers_payload = []
|
75 |
print(f"Running agent on {len(questions_data)} questions...")
|
76 |
-
for item in questions_data:
|
|
|
77 |
task_id = item.get("task_id")
|
78 |
question_text = item.get("question")
|
79 |
if not task_id or question_text is None:
|
80 |
print(f"Skipping item with missing task_id or question: {item}")
|
81 |
continue
|
82 |
try:
|
83 |
-
submitted_answer = agent(
|
84 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
85 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
86 |
except Exception as e:
|
@@ -91,6 +93,11 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
91 |
print("Agent did not produce any answers to submit.")
|
92 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
93 |
|
|
|
|
|
|
|
|
|
|
|
94 |
# 4. Prepare Submission
|
95 |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
96 |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
@@ -140,8 +147,35 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
140 |
return status_message, results_df
|
141 |
|
142 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
# --- Build Gradio Interface using Blocks ---
|
144 |
-
with gr.Blocks() as demo:
|
145 |
gr.Markdown("# Basic Agent Evaluation Runner")
|
146 |
gr.Markdown(
|
147 |
"""
|
@@ -160,7 +194,59 @@ with gr.Blocks() as demo:
|
|
160 |
|
161 |
gr.LoginButton()
|
162 |
|
163 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
164 |
|
165 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
166 |
# Removed max_rows=10 from DataFrame constructor
|
@@ -168,9 +254,12 @@ with gr.Blocks() as demo:
|
|
168 |
|
169 |
run_button.click(
|
170 |
fn=run_and_submit_all,
|
|
|
171 |
outputs=[status_output, results_table]
|
172 |
)
|
173 |
|
|
|
|
|
174 |
if __name__ == "__main__":
|
175 |
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
176 |
# Check for SPACE_HOST and SPACE_ID at startup for information
|
@@ -193,4 +282,5 @@ if __name__ == "__main__":
|
|
193 |
print("-"*(60 + len(" App Starting ")) + "\n")
|
194 |
|
195 |
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
196 |
-
demo.launch(debug=True, share=False)
|
|
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
import requests
|
|
|
4 |
import pandas as pd
|
5 |
|
6 |
+
from basic_agent import init_agent
|
7 |
+
|
8 |
# (Keep Constants as is)
|
9 |
# --- Constants ---
|
10 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
11 |
|
12 |
+
|
13 |
+
def fetch_questions():
|
14 |
+
api_url = DEFAULT_API_URL
|
15 |
+
questions_url = f"{api_url}/questions"
|
16 |
+
|
17 |
+
print(f"Fetching questions from: {questions_url}")
|
18 |
+
try:
|
19 |
+
response = requests.get(questions_url, timeout=15)
|
20 |
+
response.raise_for_status()
|
21 |
+
questions_data = response.json()
|
22 |
+
|
23 |
+
if not questions_data:
|
24 |
+
print("Fetched questions list is empty.")
|
25 |
+
return "Fetched questions list is empty or invalid format.", None
|
26 |
+
print(f"Fetched {len(questions_data)} questions.")
|
27 |
+
except requests.exceptions.RequestException as e:
|
28 |
+
print(f"Error fetching questions: {e}")
|
29 |
+
return f"Error fetching questions: {e}", None
|
30 |
+
except requests.exceptions.JSONDecodeError as e:
|
31 |
+
print(f"Error decoding JSON response from questions endpoint: {e}")
|
32 |
+
print(f"Response text: {response.text[:500]}")
|
33 |
+
return f"Error decoding server response for questions: {e}", None
|
34 |
+
except Exception as e:
|
35 |
+
print(f"An unexpected error occurred fetching questions: {e}")
|
36 |
+
return f"An unexpected error occurred fetching questions: {e}", None
|
37 |
+
return None, questions_data
|
38 |
+
|
39 |
+
|
40 |
+
def run_and_submit_all(submit: bool, max_questions: int | None, profile: gr.OAuthProfile | None):
|
41 |
"""
|
42 |
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
43 |
and displays the results.
|
44 |
"""
|
45 |
+
message, questions_data = fetch_questions()
|
46 |
# --- Determine HF Space Runtime URL and Repo URL ---
|
47 |
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
|
48 |
|
|
|
54 |
return "Please Login to Hugging Face with the button.", None
|
55 |
|
56 |
api_url = DEFAULT_API_URL
|
|
|
57 |
submit_url = f"{api_url}/submit"
|
58 |
|
59 |
# 1. Instantiate Agent ( modify this part to create your agent)
|
60 |
try:
|
61 |
+
agent = init_agent()
|
62 |
except Exception as e:
|
63 |
print(f"Error instantiating agent: {e}")
|
64 |
return f"Error initializing agent: {e}", None
|
|
|
66 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
67 |
print(agent_code)
|
68 |
|
69 |
+
|
70 |
+
if max_questions > 0:
|
71 |
+
questions_data = questions_data[:max_questions] # Limit number of questions
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
# 3. Run your Agent
|
74 |
results_log = []
|
75 |
answers_payload = []
|
76 |
print(f"Running agent on {len(questions_data)} questions...")
|
77 |
+
for iid, item in enumerate(questions_data):
|
78 |
+
print(f"Running agent on question {iid}")
|
79 |
task_id = item.get("task_id")
|
80 |
question_text = item.get("question")
|
81 |
if not task_id or question_text is None:
|
82 |
print(f"Skipping item with missing task_id or question: {item}")
|
83 |
continue
|
84 |
try:
|
85 |
+
submitted_answer = agent(item)
|
86 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
87 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
88 |
except Exception as e:
|
|
|
93 |
print("Agent did not produce any answers to submit.")
|
94 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
95 |
|
96 |
+
if not submit:
|
97 |
+
status_update = f"Processed {len(answers_payload)} questions. Submission skipped (submit checkbox unchecked)."
|
98 |
+
print(status_update)
|
99 |
+
return status_update, pd.DataFrame(results_log)
|
100 |
+
|
101 |
# 4. Prepare Submission
|
102 |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
103 |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
|
|
147 |
return status_message, results_df
|
148 |
|
149 |
|
150 |
+
def fetch_and_run_single(selected_id, questions_data, profile: gr.OAuthProfile | None):
|
151 |
+
if profile:
|
152 |
+
print(f"User logged in: {profile.username}")
|
153 |
+
else:
|
154 |
+
print("User not logged in.")
|
155 |
+
return "Please Login to Hugging Face with the button.", None, None
|
156 |
+
|
157 |
+
try:
|
158 |
+
index = int(selected_id)
|
159 |
+
question_item = questions_data[index]
|
160 |
+
task_id = question_item.get("task_id")
|
161 |
+
question_text = question_item.get("question")
|
162 |
+
if not task_id or question_text is None:
|
163 |
+
return "Invalid question format received.", None, None
|
164 |
+
except Exception as e:
|
165 |
+
return f"Error selecting question: {e}", None, None
|
166 |
+
|
167 |
+
agent = init_agent()
|
168 |
+
generated_answer = agent(question_item)
|
169 |
+
result_df = pd.DataFrame([{
|
170 |
+
"Task ID": task_id,
|
171 |
+
"Question": question_text,
|
172 |
+
"Generated Answer": generated_answer
|
173 |
+
}])
|
174 |
+
return "Fetched and ran agent on selected question.", result_df, question_item
|
175 |
+
|
176 |
+
|
177 |
# --- Build Gradio Interface using Blocks ---
|
178 |
+
with (gr.Blocks() as demo):
|
179 |
gr.Markdown("# Basic Agent Evaluation Runner")
|
180 |
gr.Markdown(
|
181 |
"""
|
|
|
194 |
|
195 |
gr.LoginButton()
|
196 |
|
197 |
+
questions_data_state = gr.State()
|
198 |
+
question_ids_state = gr.State()
|
199 |
+
|
200 |
+
|
201 |
+
def show_questions():
|
202 |
+
message, questions_data = fetch_questions()
|
203 |
+
if not questions_data:
|
204 |
+
return pd.DataFrame([{'error': message}]), gr.update(choices=[]), questions_data
|
205 |
+
questions_data.sort(key=lambda item: item['task_id'])
|
206 |
+
for i in range(len(questions_data)):
|
207 |
+
questions_data[i]['ID'] = i
|
208 |
+
|
209 |
+
df = pd.DataFrame(questions_data)
|
210 |
+
return df, gr.update(choices=list(range(len(df)))), questions_data
|
211 |
+
|
212 |
+
q_button = gr.Button("Fetch all questions")
|
213 |
+
q_table = gr.DataFrame(label="All Questions", wrap=True)
|
214 |
+
|
215 |
+
|
216 |
+
question_id_dropdown = gr.Dropdown(label="Select Question ID to Run", choices=[])
|
217 |
+
questions_data_state = gr.State()
|
218 |
+
|
219 |
+
q_button.click(
|
220 |
+
fn=show_questions,
|
221 |
+
inputs=[],
|
222 |
+
outputs=[q_table, question_id_dropdown, questions_data_state]
|
223 |
+
)
|
224 |
+
|
225 |
+
|
226 |
+
# NEW BUTTON for single question run
|
227 |
+
gr.Markdown("## Single test run")
|
228 |
+
gr.Markdown("---")
|
229 |
+
single_run_button = gr.Button("Run Single Question")
|
230 |
+
single_question_json = gr.JSON(label="Raw Question JSON")
|
231 |
+
single_status = gr.Textbox(label="Single Question Status", lines=2, interactive=False)
|
232 |
+
single_result_table = gr.DataFrame(label="Single Question and Answer", wrap=True)
|
233 |
+
|
234 |
+
single_run_button.click(
|
235 |
+
fn=fetch_and_run_single,
|
236 |
+
inputs=[question_id_dropdown, questions_data_state],
|
237 |
+
outputs=[single_status, single_result_table, single_question_json]
|
238 |
+
)
|
239 |
+
|
240 |
+
# All questions for submission run
|
241 |
+
gr.Markdown("## Run and Submit")
|
242 |
+
submit_checkbox = gr.Checkbox(label="Submit Results?", value=False)
|
243 |
+
max_questions_input = gr.Dropdown(
|
244 |
+
label="Maximum Number of Questions to Process",
|
245 |
+
choices=[0, 1, 2, 5, 10, 20], # 0 to 20
|
246 |
+
value=0
|
247 |
+
)
|
248 |
+
|
249 |
+
run_button = gr.Button("Run Evaluation & Maybe Submit Answers")
|
250 |
|
251 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
252 |
# Removed max_rows=10 from DataFrame constructor
|
|
|
254 |
|
255 |
run_button.click(
|
256 |
fn=run_and_submit_all,
|
257 |
+
inputs=[submit_checkbox, max_questions_input],
|
258 |
outputs=[status_output, results_table]
|
259 |
)
|
260 |
|
261 |
+
|
262 |
+
|
263 |
if __name__ == "__main__":
|
264 |
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
265 |
# Check for SPACE_HOST and SPACE_ID at startup for information
|
|
|
282 |
print("-"*(60 + len(" App Starting ")) + "\n")
|
283 |
|
284 |
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
285 |
+
demo.launch(debug=True, share=False)
|
286 |
+
|
basic_agent.py
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
from smolagents import Tool, CodeAgent, HfApiModel, OpenAIServerModel
|
3 |
+
import dotenv
|
4 |
+
from ac_tools import DuckDuckGoSearchToolWH
|
5 |
+
import requests
|
6 |
+
import os
|
7 |
+
from PIL import Image
|
8 |
+
from transformers import pipeline
|
9 |
+
|
10 |
+
|
11 |
+
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
12 |
+
|
13 |
+
|
14 |
+
def init_agent():
|
15 |
+
dotenv.load_dotenv()
|
16 |
+
model = OpenAIServerModel(model_id="gpt-4o")
|
17 |
+
agent = BasicSmolAgent(model=model)
|
18 |
+
return agent
|
19 |
+
|
20 |
+
|
21 |
+
def download_file(task_id: str, filename: str) -> str:
|
22 |
+
"""
|
23 |
+
Downloads a file associated with the given task_id and saves it to the specified filename.
|
24 |
+
|
25 |
+
Args:
|
26 |
+
task_id (str): The task identifier used to fetch the file.
|
27 |
+
filename (str): The desired filename to save the file as.
|
28 |
+
|
29 |
+
Returns:
|
30 |
+
str: The absolute path to the saved file.
|
31 |
+
"""
|
32 |
+
api_url = DEFAULT_API_URL
|
33 |
+
file_url = f"{api_url}/files/{task_id}"
|
34 |
+
folder = 'data'
|
35 |
+
print(f"📡 Fetching file from: {file_url}")
|
36 |
+
try:
|
37 |
+
response = requests.get(file_url, timeout=15)
|
38 |
+
response.raise_for_status()
|
39 |
+
|
40 |
+
# Save binary content to the given filename
|
41 |
+
fpath = os.path.join(folder, filename)
|
42 |
+
with open(fpath, "wb") as f:
|
43 |
+
f.write(response.content)
|
44 |
+
|
45 |
+
abs_path = os.path.abspath(fpath)
|
46 |
+
print(f"✅ File saved as: {abs_path}")
|
47 |
+
return abs_path
|
48 |
+
|
49 |
+
except requests.exceptions.RequestException as e:
|
50 |
+
error_msg = f"❌ Failed to download file for task {task_id}: {e}"
|
51 |
+
print(error_msg)
|
52 |
+
raise RuntimeError(error_msg)
|
53 |
+
|
54 |
+
|
55 |
+
class BasicAgent:
|
56 |
+
def __init__(self):
|
57 |
+
print("BasicAgent initialized.")
|
58 |
+
def __call__(self, question_item: dict) -> str:
|
59 |
+
task_id = question_item.get("task_id")
|
60 |
+
question_text = question_item.get("question")
|
61 |
+
file_name = question_item.get("file_name")
|
62 |
+
print(f"Agent received question (first 50 chars): {question_text[:50]}...")
|
63 |
+
fixed_answer = "This is a default answer."
|
64 |
+
print(f"Agent returning fixed answer: {fixed_answer}")
|
65 |
+
return fixed_answer
|
66 |
+
|
67 |
+
|
68 |
+
class BasicSmolAgent:
|
69 |
+
def __init__(self, model=None):
|
70 |
+
print("BasicSmolAgent initialized.")
|
71 |
+
if not model:
|
72 |
+
model = HfApiModel()
|
73 |
+
search_tool = DuckDuckGoSearchToolWH()
|
74 |
+
self.agent = CodeAgent(tools=[search_tool], model=model)
|
75 |
+
self.prompt = ("You are a general AI assistant. I will ask you a question."
|
76 |
+
" Return only your FINAL ANSWER."
|
77 |
+
" YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings."
|
78 |
+
" If you are asked for a number, don't use comma to write your number neither use units"
|
79 |
+
" such as $ or percent sign unless specified otherwise. If you are asked for a string,"
|
80 |
+
" don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise."
|
81 |
+
" If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string."
|
82 |
+
" make sure you don’t include the text “FINAL ANSWER” in your submission, just reply with the answer and nothing else."
|
83 |
+
" The question is the following: {}")
|
84 |
+
# Load the Whisper pipeline
|
85 |
+
self.mp3_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base")
|
86 |
+
|
87 |
+
def __call__(self, question_item: dict) -> str:
|
88 |
+
task_id = question_item.get("task_id")
|
89 |
+
question_text = question_item.get("question")
|
90 |
+
file_name = question_item.get("file_name")
|
91 |
+
|
92 |
+
print(f"Agent received question (first 50 chars): {question_text[:50]}...")
|
93 |
+
prompted_question = self.prompt.format(question_text)
|
94 |
+
|
95 |
+
images = []
|
96 |
+
if file_name:
|
97 |
+
fpath = download_file(task_id, file_name)
|
98 |
+
if fpath.endswith('.png'):
|
99 |
+
image = Image.open(fpath).convert("RGB")
|
100 |
+
images.append(image)
|
101 |
+
if fpath.endswith('xlsx') or fpath.endswith('.py'):
|
102 |
+
data = open(fpath, "rb").read().decode("utf-8", errors="ignore")
|
103 |
+
prompted_question += f"\nThere is textual data included with the question, it is from a file {fpath} and is: ```{data}```"
|
104 |
+
if fpath.endswith('.mp3'):
|
105 |
+
try:
|
106 |
+
result = self.mp3_pipe(fpath)
|
107 |
+
text = result["text"]
|
108 |
+
prompted_question += f"\nThere is textual data included with the question, it is from a file {fpath} and is: ```{text}```"
|
109 |
+
except Exception as e:
|
110 |
+
print("Exception occurred during mp3 transcription: ", e)
|
111 |
+
|
112 |
+
result = self.agent.run(prompted_question, images=images)
|
113 |
+
print(f"Agent returning answer: {result}")
|
114 |
+
return result
|
115 |
+
|
data/.gitkeep
ADDED
File without changes
|
requirements.txt
CHANGED
@@ -1,2 +1,8 @@
|
|
1 |
-
gradio
|
2 |
-
requests
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio[oauth]
|
2 |
+
requests
|
3 |
+
openai
|
4 |
+
python-dotenv
|
5 |
+
pandas
|
6 |
+
duckduckgo_search
|
7 |
+
smolagents
|
8 |
+
transformers
|