File size: 9,644 Bytes
80f1239
 
 
 
 
 
 
022b5a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80f1239
022b5a1
 
 
 
 
 
80f1239
 
 
 
 
 
 
 
 
022b5a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80f1239
 
 
 
022b5a1
80f1239
022b5a1
 
 
80f1239
 
 
 
022b5a1
 
80f1239
 
 
 
 
 
 
022b5a1
 
 
 
80f1239
 
022b5a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80f1239
022b5a1
 
 
 
 
 
 
 
 
 
80f1239
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import cv2
#from aruco_detector import ArucoDetector


import gradio as gr
import os

dict_list = ['DICT_4X4_50', 
             'DICT_4X4_100', 
             'DICT_4X4_250', 
             'DICT_4X4_1000',
             'DICT_5X5_50',
             'DICT_5X5_100',
             'DICT_5X5_250', 
             'DICT_5X5_1000', 
             'DICT_6X6_50', 
             'DICT_6X6_100', 
                         'DICT_6X6_250',
                         'DICT_6X6_1000',
                         'DICT_7X7_50',
                         'DICT_7X7_100',
                         'DICT_7X7_250',
                         'DICT_7X7_1000',
                         'DICT_ARUCO_ORIGINAL',
                         'DICT_APRILTAG_16h5',
                         'DICT_APRILTAG_25h9',
                         'DICT_APRILTAG_36h10',
                         'DICT_APRILTAG_36h11',
                         'DICT_ARUCO_MIP_36h12']

def inference(image_path, dict_name, draw_rejects,
              adaptiveThreshWinSizeMin, adaptiveThreshWinSizeMax, adaptiveThreshWinSizeStep, adaptiveThreshConstant, 
              minMarkerPerimeterRate, maxMarkerPerimeterRate,
                            polygonalApproxAccuracyRate, minCornerDistanceRate, minDistanceToBorder, minMarkerDistanceRate,
              cornerRefinementMethod, cornerRefinementWinSize, cornerRefinementMaxIterations, cornerRefinementMinAccuracy,
              markerBoderBits, perspectiveRemovePixelPerCell, perspectiveRemoveIgnoredMarginPerCell, maxErroneousBitsInBorderRate, minOtsuStdDev, errorCorrectionRate):
    if not dict_name:
        raise gr.Error("No model selected. Please select a model.")
    if not image_path:
        raise gr.Error("No image provided. Please upload an image.")

    dict_index = dict_list.index(dict_name)
    aruco_dict = cv2.aruco.getPredefinedDictionary(dict_index)

    aruco_params = cv2.aruco.DetectorParameters()
    
    aruco_params.adaptiveThreshWinSizeMin       =      int(adaptiveThreshWinSizeMin)
    aruco_params.adaptiveThreshWinSizeMax       =      int(adaptiveThreshWinSizeMax)
    aruco_params.adaptiveThreshWinSizeStep      =     int(adaptiveThreshWinSizeStep)
    aruco_params.adaptiveThreshConstant         =     int(adaptiveThreshConstant)
    aruco_params.minMarkerPerimeterRate         =     minMarkerPerimeterRate
    aruco_params.maxMarkerPerimeterRate         =     maxMarkerPerimeterRate
    aruco_params.polygonalApproxAccuracyRate    =     polygonalApproxAccuracyRate
    aruco_params.minCornerDistanceRate          =     minCornerDistanceRate
    aruco_params.minDistanceToBorder            =     minDistanceToBorder
    aruco_params.minMarkerDistanceRate          =     minMarkerDistanceRate
    

    aruco_params.cornerRefinementMethod         =     cornerRefinementMethods.index(cornerRefinementMethod)
    aruco_params.cornerRefinementWinSize        =     int(cornerRefinementWinSize)
    aruco_params.cornerRefinementMaxIterations  =     int(cornerRefinementMaxIterations)
    aruco_params.cornerRefinementMinAccuracy    =     cornerRefinementMinAccuracy

    aruco_params.markerBorderBits                      =     int(markerBoderBits)
    aruco_params.perspectiveRemovePixelPerCell         =     int(perspectiveRemovePixelPerCell)
    aruco_params.perspectiveRemoveIgnoredMarginPerCell =     perspectiveRemoveIgnoredMarginPerCell
    aruco_params.maxErroneousBitsInBorderRate          =     maxErroneousBitsInBorderRate
    aruco_params.minOtsuStdDev                         =     minOtsuStdDev
    aruco_params.errorCorrectionRate                   =     errorCorrectionRate
    

    detector = cv2.aruco.ArucoDetector(aruco_dict, aruco_params)
    image = cv2.imread(image_path)
    
    corners, ids, rejectedImgPoints = detector.detectMarkers(image)
    thresh_image = cv2.adaptiveThreshold(cv2.cvtColor(image, cv2.COLOR_BGR2GRAY), 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, int(adaptiveThreshConstant), 2)
    image = cv2.aruco.drawDetectedMarkers(image, corners, ids, borderColor=(0, 255, 0))
    if draw_rejects:
        image = cv2.aruco.drawDetectedMarkers(image, rejectedImgPoints, borderColor=(0, 0, 255))

    for corner in corners:
        cv2.polylines(image, [corner.astype(int)], isClosed=True, color=(0, 255, 0), thickness=3)
    cv2.imwrite("output.jpg", image)
    output_image = cv2.cvtColor(cv2.imread("output.jpg"), cv2.COLOR_BGR2RGB)
    # TODO make a gif going through the thresh win size
    return output_image, thresh_image

def get_aruco_dict():
    #PREDEFINED_DICTIONARY_NAME
    return dict_list

aruco_dict = get_aruco_dict()

image_paths= [['examples/cans.png', 'DICT_4X4_50', 3, 23, 4, 7],
              ['examples/image4k.png', 'DICT_4X4_50', 3, 23, 4, 7],
              ['examples/pose.png', 'DICT_5X5_1000', 3, 23, 4, 7],
              ['examples/singlemarkerssource.jpg', 'DICT_6X6_250', 3, 23, 4, 7],
              ]

cornerRefinementMethods = ["CORNER_REFINE_NONE", "CORNER_REFINE_SUBPIX", "CORNER_REFINE_CONTOUR", "CORNER_REFINE_APRILTAG"]


with gr.Blocks() as demo:
    gr.Markdown("# Aruco tag detection\nSelect the aruco library, upload an image, and detect the aruco tags.")
    
    with gr.Row():
        with gr.Column():
            image_input = gr.Image(type="filepath", label="Upload Image")
            dict_dropdown = gr.Dropdown(choices=aruco_dict, label="Select aruco library")
            advanced_params = gr.Accordion("Advanced Parameters", open=False)
            with advanced_params:
                rejects_radio       = gr.Checkbox(label="Show Rejects", value=False)
                thresh_min_slider   = gr.Slider(minimum=3, maximum=100, step=1, value=3, label="adapatativeThreshWinSizeMin")
                thresh_max_slider   = gr.Slider(minimum=0, maximum=100, step=1, value=23, label="adapatativeThreshWinSizeMax")
                thresh_step_slider  = gr.Slider(minimum=1, maximum=100, step=1, value=10, label="adapatativeThreshWinSizeStep")
                thresh_const_slider = gr.Slider(minimum=0, maximum=50, step=1, value=7, label="adapatativeThreshConstant")
                        
                min_marker_p_slider             = gr.Slider(minimum=0, maximum=1, step=0.01, value=0.03, label="minMarkerPerimeterRate")
                max_marker_p_slider             = gr.Slider(minimum=0, maximum=10, step=0.01, value=4.0, label="maxMarkerPerimeterRate")
                poly_approx_acc_rate_slider     = gr.Slider(minimum=0, maximum=1, step=0.01, value=0.05, label="polygonalApproxAccuracyRate")
                min_corner_distance_rate_slider = gr.Slider(minimum=0, maximum=1, step=0.01, value=0.05, label="minCornerDistanceRate")
                min_distance_to_border_slider   = gr.Slider(minimum=0, maximum=25, step=1, value=3, label="minDistanceToBorder")
                min_marker_distance_rate_slider = gr.Slider(minimum=0, maximum=1, step=0.01, value=0.05, label="minMarkerDistanceRate")
                        
                cornerRefinementMethod_radio = gr.Radio(
                    choices=cornerRefinementMethods,
                    label="cornerRefinementMethod", value=cornerRefinementMethods[0]
                )
                cornerRefinementWinSize_slider                         = gr.Slider(minimum=0, maximum=20, step=1, value=5, label="cornerRefinementWinSize")
                cornerRefinementMaxIterations_slider                         = gr.Slider(minimum=1, maximum=50, step=1, value=30, label="cornerRefinementMaxIterations")
                cornerRefinementMinAccuracy_slider                 = gr.Slider(minimum=0.01, maximum=2, step=0.01, value=0.1, label="cornerRefinementMinAccuracy")
                markerBoderBits_slider = gr.Slider(minimum=1, maximum=100, step=1, value=1, label="markerBoderBits")
                perspectiveRemovePixelPerCell_slider = gr.Slider(minimum=0, maximum=100, step=1, value=8, label="perspectiveRemovePixelPerCell")
                perspectiveRemoveIgnoredMarginPerCell_slider = gr.Slider(minimum=0, maximum=1, step=0.01, value=0.13, label="perspectiveRemoveIgnoredMarginPerCell")
                maxErroneousBitsInBorderRate_slider = gr.Slider(minimum=0, maximum=1, step=0.01, value=0.04, label="maxErroneousBitsInBorderRate")
                minOtsuStdDev_slider = gr.Slider(minimum=0, maximum=10, step=0.1, value=5.0, label="minOtsuStdDev")
                errorCorrectionRate_slider = gr.Slider(minimum=0, maximum=1, step=0.01, value=0.6, label="errorCorrectionRate")


            submit_button = gr.Button("Submit")
        
        with gr.Column():
            output_image = gr.Image(type="numpy", label="Output Image")
            thresh_image = gr.Image(type="numpy", label="Thresh Image")
    
    examples = gr.Examples(examples=image_paths, inputs=[image_input, dict_dropdown, thresh_min_slider, thresh_max_slider, thresh_step_slider, thresh_const_slider], outputs=[output_image, thresh_image])
    submit_button.click(
        inference,
        inputs=[image_input, dict_dropdown, rejects_radio, thresh_min_slider, thresh_max_slider, thresh_step_slider, thresh_const_slider, min_marker_p_slider, max_marker_p_slider, poly_approx_acc_rate_slider, min_corner_distance_rate_slider, min_distance_to_border_slider, min_marker_distance_rate_slider, cornerRefinementMethod_radio, cornerRefinementWinSize_slider, cornerRefinementMaxIterations_slider, cornerRefinementMinAccuracy_slider, markerBoderBits_slider, perspectiveRemovePixelPerCell_slider, perspectiveRemoveIgnoredMarginPerCell_slider, maxErroneousBitsInBorderRate_slider, minOtsuStdDev_slider, errorCorrectionRate_slider],
        outputs=[output_image, thresh_image]
    )

demo.launch()