varunkul commited on
Commit
6ad4764
·
verified ·
1 Parent(s): 4564b05

Create main_app.py

Browse files
Files changed (1) hide show
  1. main_app.py +126 -0
main_app.py ADDED
@@ -0,0 +1,126 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os, io, pathlib, urllib.request
2
+ import numpy as np
3
+ import streamlit as st
4
+ from PIL import Image
5
+ from matplotlib import cm
6
+
7
+ st.write("### ✅ Voice Guard Streamlit — env-only v4 (no st.secrets)")
8
+
9
+ # ---- import Detector from app/ or src/ ----
10
+ Detector, _last_err = None, None
11
+ for mod in ["app.inference_wav2vec", "app.inference",
12
+ "src.inference_wav2vec", "src.inference"]:
13
+ try:
14
+ Detector = __import__(mod, fromlist=["Detector"]).Detector
15
+ break
16
+ except Exception as e:
17
+ _last_err = e
18
+ if Detector is None:
19
+ st.error(f"Could not import Detector from app/ or src/. Last error: {_last_err}")
20
+ st.stop()
21
+
22
+ # ---- ENV config only ----
23
+ def cfg(name: str, default: str = "") -> str:
24
+ v = os.getenv(name)
25
+ return v if v not in (None, "") else default
26
+
27
+ def ensure_weights() -> str:
28
+ wp = cfg("MODEL_WEIGHTS_PATH", "app/models/weights/wav2vec2_classifier.pth")
29
+ url = cfg("MODEL_WEIGHTS_URL", "")
30
+ dest = pathlib.Path(wp)
31
+ if not dest.exists() and url:
32
+ dest.parent.mkdir(parents=True, exist_ok=True)
33
+ with st.spinner(f"Downloading model weights to {dest} …"):
34
+ urllib.request.urlretrieve(url, str(dest))
35
+ st.toast("Weights downloaded", icon="✅")
36
+ if not dest.exists() and not url:
37
+ st.warning(
38
+ f"Model weights not found at '{wp}'. "
39
+ "Upload the .pth there OR set MODEL_WEIGHTS_URL in Settings → Variables & secrets."
40
+ )
41
+ return str(dest)
42
+
43
+ @st.cache_resource(show_spinner=True)
44
+ def load_detector():
45
+ return Detector(weights_path=ensure_weights())
46
+
47
+ det = load_detector()
48
+
49
+ # ---- helpers ----
50
+ def cam_to_png_bytes(cam: np.ndarray) -> bytes:
51
+ cam = np.asarray(cam, dtype=np.float32)
52
+ cam = np.nan_to_num(cam, nan=0.0); cam = np.clip(cam, 0.0, 1.0)
53
+ rgb = (cm.magma(cam)[..., :3] * 255).astype(np.uint8)
54
+ buf = io.BytesIO(); Image.fromarray(rgb).save(buf, "PNG")
55
+ return buf.getvalue()
56
+
57
+ def analyze(wav_bytes: bytes, source_hint: str):
58
+ proba = det.predict_proba(wav_bytes, source_hint=source_hint)
59
+ exp = det.explain(wav_bytes, source_hint=source_hint)
60
+ return proba, exp
61
+
62
+ # ---- UI ----
63
+ st.set_page_config(page_title="Voice Guard", page_icon="🛡️", layout="wide")
64
+ st.title("🛡️ Voice Guard — Human vs AI Speech")
65
+
66
+ left, right = st.columns([1,2], gap="large")
67
+ with left:
68
+ st.subheader("Input")
69
+ tab_rec, tab_up = st.tabs(["🎙️ Microphone", "📁 Upload"])
70
+ wav_bytes, source_hint = None, None
71
+
72
+ with tab_rec:
73
+ st.caption("Record ~3–7 s. If mic fails, use Upload.")
74
+ try:
75
+ from audio_recorder_streamlit import audio_recorder
76
+ audio = audio_recorder(text="Record",
77
+ recording_color="#ff6a00",
78
+ neutral_color="#2b2b2b",
79
+ icon_size="2x")
80
+ if audio:
81
+ wav_bytes, source_hint = audio, "microphone"
82
+ st.audio(wav_bytes, format="audio/wav")
83
+ except Exception:
84
+ st.info("Recorder not available—use Upload tab.")
85
+
86
+ with tab_up:
87
+ f = st.file_uploader("Upload wav/mp3/m4a/aac", type=["wav","mp3","m4a","aac"])
88
+ if f:
89
+ wav_bytes, source_hint = f.read(), "upload"
90
+ st.audio(wav_bytes)
91
+
92
+ st.markdown("---")
93
+ run = st.button("🔍 Analyze", type="primary", use_container_width=True,
94
+ disabled=wav_bytes is None)
95
+
96
+ with right:
97
+ st.subheader("Results")
98
+ if run and wav_bytes:
99
+ try:
100
+ with st.spinner("Analyzing…"):
101
+ proba, exp = analyze(wav_bytes, source_hint or "auto")
102
+ ph = float(proba.get("human",0.0)); pa = float(proba.get("ai",0.0))
103
+ label = (proba.get("label","human") or "human").upper()
104
+ thr = float(proba.get("threshold",0.5))
105
+ rule = proba.get("decision","threshold")
106
+ thr_src = proba.get("threshold_source","—")
107
+ rscore = proba.get("replay_score", None)
108
+
109
+ c1,c2,c3 = st.columns(3)
110
+ with c1: st.metric("Human", f"{ph*100:.1f}%")
111
+ with c2: st.metric("AI", f"{pa*100:.1f}%")
112
+ with c3:
113
+ color = "#22c55e" if label=="HUMAN" else "#fb7185"
114
+ st.markdown(f"**Final Label:** <span style='color:{color}'>{label}</span>", unsafe_allow_html=True)
115
+ st.caption(f"thr({thr_src})={thr:.2f} • rule={rule} • replay={'—' if rscore is None else f'{float(rscore):.2f}'}")
116
+
117
+ st.markdown("##### Explanation Heatmap")
118
+ cam = np.asarray(exp.get("cam"), dtype=np.float32)
119
+ st.image(cam_to_png_bytes(cam), caption="Spectrogram importance", use_column_width=True)
120
+
121
+ with st.expander("Raw JSON (debug)"):
122
+ st.json({"proba": proba, "explain": {"cam_shape": list(cam.shape)}})
123
+ except Exception as e:
124
+ st.error(f"Analyze failed: {e}")
125
+
126
+ st.caption("Upload 3–7s clips for the most reliable experience across browsers.")