varunkul commited on
Commit
4564b05
·
verified ·
1 Parent(s): 09f5d1d

Update src/streamlit_app.py

Browse files
Files changed (1) hide show
  1. src/streamlit_app.py +57 -124
src/streamlit_app.py CHANGED
@@ -1,190 +1,123 @@
1
- # streamlit_app.py
2
- # ------------------------------------------------------------
3
- # Voice Guard (Streamlit) - env-only config (no st.secrets required)
4
- # - Tries app/ then src/ for the Detector
5
- # - Accepts mic (best-effort) or upload
6
- # - Shows probabilities, decision details, and CAM heatmap
7
- # - If MODEL_WEIGHTS_URL is set, downloads weights on boot when missing
8
- # ------------------------------------------------------------
9
-
10
- import os
11
- import io
12
- import pathlib
13
- import urllib.request
14
  import numpy as np
15
  import streamlit as st
16
  from PIL import Image
17
  from matplotlib import cm
18
 
19
- # --------------------------- Import Detector ---------------------------
20
- Detector = None
21
- _last_err = None
22
- for mod in [
23
- "app.inference_wav2vec",
24
- "app.inference",
25
- "src.inference_wav2vec",
26
- "src.inference",
27
- ]:
28
  try:
29
  Detector = __import__(mod, fromlist=["Detector"]).Detector
30
  break
31
  except Exception as e:
32
  _last_err = e
33
-
34
  if Detector is None:
35
- st.error(
36
- "Could not import Detector from app/ or src/. "
37
- "Please include app/inference_wav2vec.py (preferred) or app/inference.py. "
38
- f"Last import error: {_last_err}"
39
- )
40
  st.stop()
41
 
42
- # ----------------------- Weights: ensure on disk -----------------------
43
  def cfg(name: str, default: str = "") -> str:
44
- """Read from environment only (HF Variables & Secrets are env)."""
45
- val = os.getenv(name)
46
- return val if val not in (None, "") else default
47
 
48
  def ensure_weights() -> str:
49
- """
50
- Ensure model weights exist at MODEL_WEIGHTS_PATH.
51
- If missing and MODEL_WEIGHTS_URL is set, download them.
52
- """
53
- default_path = "app/models/weights/wav2vec2_classifier.pth"
54
- wp = cfg("MODEL_WEIGHTS_PATH", default_path)
55
  url = cfg("MODEL_WEIGHTS_URL", "")
56
-
57
  dest = pathlib.Path(wp)
58
- if not dest.exists():
59
- if url:
60
- dest.parent.mkdir(parents=True, exist_ok=True)
61
- with st.spinner(f"Downloading model weights to {dest} …"):
62
- urllib.request.urlretrieve(url, str(dest))
63
- st.toast("Weights downloaded", icon="✅")
64
- else:
65
- st.warning(
66
- f"Model weights not found at '{wp}'. "
67
- "Upload the .pth file to that path in the repo OR set MODEL_WEIGHTS_URL in "
68
- "Settings → Variables & secrets so the app can download them."
69
- )
70
  return str(dest)
71
 
72
  @st.cache_resource(show_spinner=True)
73
- def load_detector() -> "Detector":
74
- weights_path = ensure_weights()
75
- det = Detector(weights_path=weights_path)
76
- return det
77
 
78
  det = load_detector()
79
 
80
- # ----------------------------- Utilities -------------------------------
81
  def cam_to_png_bytes(cam: np.ndarray) -> bytes:
82
- """Map [H,W] float array (0..1) to magma RGB PNG bytes."""
83
  cam = np.asarray(cam, dtype=np.float32)
84
- cam = np.nan_to_num(cam, nan=0.0)
85
- cam = np.clip(cam, 0.0, 1.0)
86
  rgb = (cm.magma(cam)[..., :3] * 255).astype(np.uint8)
87
- img = Image.fromarray(rgb)
88
- bio = io.BytesIO()
89
- img.save(bio, format="PNG")
90
- return bio.getvalue()
91
 
92
  def analyze(wav_bytes: bytes, source_hint: str):
93
- """Call detector predict + explain; returns (proba_dict, explain_dict)."""
94
  proba = det.predict_proba(wav_bytes, source_hint=source_hint)
95
- exp = det.explain(wav_bytes, source_hint=source_hint)
96
  return proba, exp
97
 
98
- # ------------------------------- UI -----------------------------------
99
  st.set_page_config(page_title="Voice Guard", page_icon="🛡️", layout="wide")
100
  st.title("🛡️ Voice Guard — Human vs AI Speech")
101
 
102
- left, right = st.columns([1, 2], gap="large")
103
-
104
  with left:
105
  st.subheader("Input")
106
- tabs = st.tabs(["🎙️ Microphone", "📁 Upload"])
107
-
108
- wav_bytes = None
109
- source_hint = None
110
 
111
- # Microphone tab (best effort; if not supported, use Upload)
112
- with tabs[0]:
113
- st.caption("Record ~3–7 seconds. If mic fails in your browser, use Upload.")
114
  try:
115
  from audio_recorder_streamlit import audio_recorder
116
- audio = audio_recorder(
117
- text="Record",
118
- recording_color="#ff6a00",
119
- neutral_color="#2b2b2b",
120
- icon_size="2x",
121
- )
122
  if audio:
123
- wav_bytes = audio # component returns WAV bytes
124
- source_hint = "microphone"
125
  st.audio(wav_bytes, format="audio/wav")
126
  except Exception:
127
- st.info("Recorder component not available hereplease use the Upload tab.")
128
 
129
- # Upload tab (most reliable across platforms)
130
- with tabs[1]:
131
- f = st.file_uploader(
132
- "Upload an audio file (wav/mp3/m4a/aac)",
133
- type=["wav", "mp3", "m4a", "aac"],
134
- )
135
- if f is not None:
136
- wav_bytes = f.read()
137
- source_hint = "upload"
138
  st.audio(wav_bytes)
139
 
140
  st.markdown("---")
141
- run = st.button(
142
- "🔍 Analyze", type="primary", use_container_width=True, disabled=wav_bytes is None
143
- )
144
 
145
  with right:
146
  st.subheader("Results")
147
-
148
  if run and wav_bytes:
149
  try:
150
  with st.spinner("Analyzing…"):
151
  proba, exp = analyze(wav_bytes, source_hint or "auto")
152
-
153
- ph = float(proba.get("human", 0.0))
154
- pa = float(proba.get("ai", 0.0))
155
- label = (proba.get("label", "human") or "human").upper()
156
- thr = float(proba.get("threshold", 0.5))
157
- rule = proba.get("decision", "threshold")
158
- thr_src = proba.get("threshold_source", "—")
159
  rscore = proba.get("replay_score", None)
160
 
161
- c1, c2, c3 = st.columns(3)
162
- with c1:
163
- st.metric("Human", f"{ph*100:.1f}%")
164
- with c2:
165
- st.metric("AI", f"{pa*100:.1f}%")
166
  with c3:
167
- color = "#22c55e" if label == "HUMAN" else "#fb7185"
168
- st.markdown(
169
- f"**Final Label:** <span style='color:{color}'>{label}</span>",
170
- unsafe_allow_html=True,
171
- )
172
- st.caption(
173
- f"thr({thr_src})={thr:.2f} • rule={rule} • replay={'—' if rscore is None else f'{float(rscore):.2f}'}"
174
- )
175
 
176
  st.markdown("##### Explanation Heatmap")
177
  cam = np.asarray(exp.get("cam"), dtype=np.float32)
178
- st.image(
179
- cam_to_png_bytes(cam),
180
- caption="Spectrogram importance",
181
- use_column_width=True,
182
- )
183
 
184
  with st.expander("Raw JSON (debug)"):
185
  st.json({"proba": proba, "explain": {"cam_shape": list(cam.shape)}})
186
-
187
  except Exception as e:
188
  st.error(f"Analyze failed: {e}")
189
 
190
- st.caption("Tip: Uploading a short 3–7s clip is the most reliable across browsers.")
 
1
+ # streamlit_app.py — ENV-ONLY CONFIG (no st.secrets)
2
+ import os, io, pathlib, urllib.request
 
 
 
 
 
 
 
 
 
 
 
3
  import numpy as np
4
  import streamlit as st
5
  from PIL import Image
6
  from matplotlib import cm
7
 
8
+ # ---- import Detector from app/ or src/ ----
9
+ Detector, _last_err = None, None
10
+ for mod in ["app.inference_wav2vec", "app.inference",
11
+ "src.inference_wav2vec", "src.inference"]:
 
 
 
 
 
12
  try:
13
  Detector = __import__(mod, fromlist=["Detector"]).Detector
14
  break
15
  except Exception as e:
16
  _last_err = e
 
17
  if Detector is None:
18
+ st.error(f"Could not import Detector from app/ or src/. Last error: {_last_err}")
 
 
 
 
19
  st.stop()
20
 
21
+ # ---- weights handling (ENV ONLY) ----
22
  def cfg(name: str, default: str = "") -> str:
23
+ v = os.getenv(name)
24
+ return v if v not in (None, "") else default
 
25
 
26
  def ensure_weights() -> str:
27
+ wp = cfg("MODEL_WEIGHTS_PATH", "app/models/weights/wav2vec2_classifier.pth")
 
 
 
 
 
28
  url = cfg("MODEL_WEIGHTS_URL", "")
 
29
  dest = pathlib.Path(wp)
30
+ if not dest.exists() and url:
31
+ dest.parent.mkdir(parents=True, exist_ok=True)
32
+ with st.spinner(f"Downloading model weights to {dest} …"):
33
+ urllib.request.urlretrieve(url, str(dest))
34
+ st.toast("Weights downloaded", icon="✅")
35
+ if not dest.exists() and not url:
36
+ st.warning(
37
+ f"Model weights not found at '{wp}'. "
38
+ "Upload the .pth there OR set MODEL_WEIGHTS_URL in Settings → Variables & secrets."
39
+ )
 
 
40
  return str(dest)
41
 
42
  @st.cache_resource(show_spinner=True)
43
+ def load_detector():
44
+ return Detector(weights_path=ensure_weights())
 
 
45
 
46
  det = load_detector()
47
 
48
+ # ---- helpers ----
49
  def cam_to_png_bytes(cam: np.ndarray) -> bytes:
 
50
  cam = np.asarray(cam, dtype=np.float32)
51
+ cam = np.nan_to_num(cam, nan=0.0); cam = np.clip(cam, 0.0, 1.0)
 
52
  rgb = (cm.magma(cam)[..., :3] * 255).astype(np.uint8)
53
+ buf = io.BytesIO(); Image.fromarray(rgb).save(buf, "PNG")
54
+ return buf.getvalue()
 
 
55
 
56
  def analyze(wav_bytes: bytes, source_hint: str):
 
57
  proba = det.predict_proba(wav_bytes, source_hint=source_hint)
58
+ exp = det.explain(wav_bytes, source_hint=source_hint)
59
  return proba, exp
60
 
61
+ # ---- UI ----
62
  st.set_page_config(page_title="Voice Guard", page_icon="🛡️", layout="wide")
63
  st.title("🛡️ Voice Guard — Human vs AI Speech")
64
 
65
+ left, right = st.columns([1,2], gap="large")
 
66
  with left:
67
  st.subheader("Input")
68
+ tab_rec, tab_up = st.tabs(["🎙️ Microphone", "📁 Upload"])
69
+ wav_bytes, source_hint = None, None
 
 
70
 
71
+ with tab_rec:
72
+ st.caption("Record ~3–7 s. If mic fails, use Upload.")
 
73
  try:
74
  from audio_recorder_streamlit import audio_recorder
75
+ audio = audio_recorder(text="Record", recording_color="#ff6a00",
76
+ neutral_color="#2b2b2b", icon_size="2x")
 
 
 
 
77
  if audio:
78
+ wav_bytes, source_hint = audio, "microphone"
 
79
  st.audio(wav_bytes, format="audio/wav")
80
  except Exception:
81
+ st.info("Recorder not available—use Upload tab.")
82
 
83
+ with tab_up:
84
+ f = st.file_uploader("Upload wav/mp3/m4a/aac", type=["wav","mp3","m4a","aac"])
85
+ if f:
86
+ wav_bytes, source_hint = f.read(), "upload"
 
 
 
 
 
87
  st.audio(wav_bytes)
88
 
89
  st.markdown("---")
90
+ run = st.button("🔍 Analyze", type="primary", use_container_width=True,
91
+ disabled=wav_bytes is None)
 
92
 
93
  with right:
94
  st.subheader("Results")
 
95
  if run and wav_bytes:
96
  try:
97
  with st.spinner("Analyzing…"):
98
  proba, exp = analyze(wav_bytes, source_hint or "auto")
99
+ ph = float(proba.get("human",0.0)); pa = float(proba.get("ai",0.0))
100
+ label = (proba.get("label","human") or "human").upper()
101
+ thr = float(proba.get("threshold",0.5))
102
+ rule = proba.get("decision","threshold")
103
+ thr_src = proba.get("threshold_source","—")
 
 
104
  rscore = proba.get("replay_score", None)
105
 
106
+ c1,c2,c3 = st.columns(3)
107
+ with c1: st.metric("Human", f"{ph*100:.1f}%")
108
+ with c2: st.metric("AI", f"{pa*100:.1f}%")
 
 
109
  with c3:
110
+ color = "#22c55e" if label=="HUMAN" else "#fb7185"
111
+ st.markdown(f"**Final Label:** <span style='color:{color}'>{label}</span>", unsafe_allow_html=True)
112
+ st.caption(f"thr({thr_src})={thr:.2f} rule={rule} • replay={'—' if rscore is None else f'{float(rscore):.2f}'}")
 
 
 
 
 
113
 
114
  st.markdown("##### Explanation Heatmap")
115
  cam = np.asarray(exp.get("cam"), dtype=np.float32)
116
+ st.image(cam_to_png_bytes(cam), caption="Spectrogram importance", use_column_width=True)
 
 
 
 
117
 
118
  with st.expander("Raw JSON (debug)"):
119
  st.json({"proba": proba, "explain": {"cam_shape": list(cam.shape)}})
 
120
  except Exception as e:
121
  st.error(f"Analyze failed: {e}")
122
 
123
+ st.caption("Upload 3–7s clips for the most reliable experience across browsers.")