|
from transformers import pipeline |
|
import torch |
|
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan |
|
from datasets import load_dataset |
|
from IPython.display import Audio |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
from transformers import pipeline |
|
|
|
pipe = pipeline( |
|
"automatic-speech-recognition", model="openai/whisper-base", device=device |
|
) |
|
|
|
dataset = load_dataset("facebook/voxpopuli", "es", split="validation", streaming=True,trust_remote_code=True) |
|
sample = next(iter(dataset)) |
|
def translate(audio): |
|
outputs = pipe(audio, generate_kwargs={"task": "translate",'max_new_tokens':255}) |
|
return outputs["text"] |
|
|
|
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts") |
|
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device) |
|
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device) |
|
|
|
|
|
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") |
|
speaker_embeddings = torch.tensor(embeddings_dataset[0]["xvector"]).unsqueeze(0).to(device) |
|
|
|
def synthesise(text): |
|
inputs = processor(text=text, return_tensors="pt") |
|
speech = model.generate_speech( |
|
inputs["input_ids"].to(device), |
|
speaker_embeddings, |
|
vocoder=vocoder |
|
) |
|
return speech.cpu() |
|
import numpy as np |
|
|
|
target_dtype = np.int16 |
|
max_range = np.iinfo(target_dtype).max |
|
def speech_to_speech_translation(audio): |
|
translated_text = translate(audio) |
|
synthesised_speech = synthesise(translated_text) |
|
synthesised_speech = (synthesised_speech.numpy() * max_range).astype(np.int16) |
|
return 16000, synthesised_speech |
|
sampling_rate, synthesised_speech = speech_to_speech_translation(sample["audio"]) |
|
|