from transformers import pipeline import torch from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan from datasets import load_dataset from IPython.display import Audio device = "cuda" if torch.cuda.is_available() else "cpu" from transformers import pipeline pipe = pipeline( "automatic-speech-recognition", model="openai/whisper-base", device=device ) dataset = load_dataset("facebook/voxpopuli", "es", split="validation", streaming=True,trust_remote_code=True) sample = next(iter(dataset)) def translate(audio): outputs = pipe(audio, generate_kwargs={"task": "translate",'max_new_tokens':255}) return outputs["text"] # Load SpeechT5 Processor and Model processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts") model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device) vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device) # Load Speaker Embeddings embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") speaker_embeddings = torch.tensor(embeddings_dataset[0]["xvector"]).unsqueeze(0).to(device) # Define Speech Synthesis Function def synthesise(text): inputs = processor(text=text, return_tensors="pt") speech = model.generate_speech( inputs["input_ids"].to(device), speaker_embeddings, vocoder=vocoder ) return speech.cpu() import numpy as np target_dtype = np.int16 max_range = np.iinfo(target_dtype).max def speech_to_speech_translation(audio): translated_text = translate(audio) synthesised_speech = synthesise(translated_text) synthesised_speech = (synthesised_speech.numpy() * max_range).astype(np.int16) return 16000, synthesised_speech sampling_rate, synthesised_speech = speech_to_speech_translation(sample["audio"])