Spaces:
Running
Running
import streamlit as st | |
import numpy as np | |
from PIL import Image | |
import tensorflow as tf | |
import tensorflow_hub as hub | |
import tempfile | |
import urllib.request | |
# APP user interface configuration | |
st.set_page_config(page_title="Dog Breed Identifier", layout="centered") | |
# Add my logo | |
col1, col2, col3 = st.columns([1, 2, 1]) | |
with col2: | |
st.markdown("##") # Add vertical spacing | |
st.image("assets/MLOwl_ca_logo_no_bkg_black_cropped.png", width=300) | |
# Load the model | |
def load_model(): | |
url = "https://huggingface.co/turtlemb/dogID_app_model/resolve/main/dog_breed_ID_batch32_cache_prefetch.keras" | |
with tempfile.NamedTemporaryFile(suffix=".keras") as tmp: | |
urllib.request.urlretrieve(url, tmp.name) | |
model = tf.keras.models.load_model(tmp.name, custom_objects={"KerasLayer": hub.KerasLayer}) | |
return model | |
model = load_model() | |
# Define the class names (120 breeds) | |
class_names = np.array([ | |
'affenpinscher', 'afghan_hound', 'african_hunting_dog', 'airedale', | |
'american_staffordshire_terrier', 'appenzeller', 'australian_terrier', | |
'basenji', 'basset', 'beagle', 'bedlington_terrier', 'bernese_mountain_dog', | |
'black-and-tan_coonhound', 'blenheim_spaniel', 'bloodhound', 'bluetick', | |
'border_collie', 'border_terrier', 'borzoi', 'boston_bull', | |
'bouvier_des_flandres', 'boxer', 'brabancon_griffon', 'briard', | |
'brittany_spaniel', 'bull_mastiff', 'cairn', 'cardigan', | |
'chesapeake_bay_retriever', 'chihuahua', 'chow', 'clumber', | |
'cocker_spaniel', 'collie', 'curly-coated_retriever', 'dandie_dinmont', | |
'dhole', 'dingo', 'doberman', 'english_foxhound', 'english_setter', | |
'english_springer', 'entlebucher', 'eskimo_dog', 'flat-coated_retriever', | |
'french_bulldog', 'german_shepherd', 'german_short-haired_pointer', | |
'giant_schnauzer', 'golden_retriever', 'gordon_setter', 'great_dane', | |
'great_pyrenees', 'greater_swiss_mountain_dog', 'groenendael', | |
'ibizan_hound', 'irish_setter', 'irish_terrier', 'irish_water_spaniel', | |
'irish_wolfhound', 'italian_greyhound', 'japanese_spaniel', 'keeshond', | |
'kelpie', 'kerry_blue_terrier', 'komondor', 'kuvasz', | |
'labrador_retriever', 'lakeland_terrier', 'leonberg', 'lhasa', | |
'malamute', 'malinois', 'maltese_dog', 'mexican_hairless', | |
'miniature_pinscher', 'miniature_poodle', 'miniature_schnauzer', | |
'newfoundland', 'norfolk_terrier', 'norwegian_elkhound', | |
'norwich_terrier', 'old_english_sheepdog', 'otterhound', 'papillon', | |
'pekinese', 'pembroke', 'pomeranian', 'pug', 'redbone', | |
'rhodesian_ridgeback', 'rottweiler', 'saint_bernard', 'saluki', | |
'samoyed', 'schipperke', 'scotch_terrier', 'scottish_deerhound', | |
'sealyham_terrier', 'shetland_sheepdog', 'shih-tzu', 'siberian_husky', | |
'silky_terrier', 'soft-coated_wheaten_terrier', | |
'staffordshire_bullterrier', 'standard_poodle', 'standard_schnauzer', | |
'sussex_spaniel', 'tibetan_mastiff', 'tibetan_terrier', 'toy_poodle', | |
'toy_terrier', 'vizsla', 'walker_hound', 'weimaraner', | |
'welsh_springer_spaniel', 'west_highland_white_terrier', 'whippet', | |
'wire-haired_fox_terrier', 'yorkshire_terrier' | |
]) | |
# Preprocessing the image | |
def preprocess(image: Image.Image): | |
image = image.resize((224, 224)) | |
array = np.array(image) / 255.0 | |
return np.expand_dims(array, axis=0) | |
# App user interface | |
with st.container(): | |
st.title("🐕 The DogID App") | |
st.markdown("<p style = 'text-align: left; color: gray;'> by Martin Bijloos | MLOwl.ca</p>", | |
unsafe_allow_html=True) | |
st.write("Upload a photo of a dog and get the breed prediction!") | |
uploaded_file = st.file_uploader( | |
"Upload a dog image", type=["jpg", "jpeg", "png"]) | |
if uploaded_file: | |
image = Image.open(uploaded_file).convert("RGB") | |
st.image(image, caption="Uploaded Image", use_column_width=True) | |
if st.button("Classify"): | |
st.info("Processing...") | |
input_tensor = preprocess(image) | |
prediction = model.predict(input_tensor)[0] | |
top_k = 3 | |
top_indices = prediction.argsort()[-top_k:][::-1] | |
top_classes = class_names[top_indices] | |
top_confidences = prediction[top_indices] | |
st.success("Top Predictions:") | |
for breed, score in zip(top_classes, top_confidences): | |
st.write( | |
f"- **{breed.replace('_', ' ').title()}**: {score:.2%}") | |