import streamlit as st import numpy as np from PIL import Image import tensorflow as tf import tensorflow_hub as hub import tempfile import urllib.request # APP user interface configuration st.set_page_config(page_title="Dog Breed Identifier", layout="centered") # Add my logo col1, col2, col3 = st.columns([1, 2, 1]) with col2: st.markdown("##") # Add vertical spacing st.image("assets/MLOwl_ca_logo_no_bkg_black_cropped.png", width=300) # Load the model @st.cache_resource def load_model(): url = "https://huggingface.co/turtlemb/dogID_app_model/resolve/main/dog_breed_ID_batch32_cache_prefetch.keras" with tempfile.NamedTemporaryFile(suffix=".keras") as tmp: urllib.request.urlretrieve(url, tmp.name) model = tf.keras.models.load_model(tmp.name, custom_objects={"KerasLayer": hub.KerasLayer}) return model model = load_model() # Define the class names (120 breeds) class_names = np.array([ 'affenpinscher', 'afghan_hound', 'african_hunting_dog', 'airedale', 'american_staffordshire_terrier', 'appenzeller', 'australian_terrier', 'basenji', 'basset', 'beagle', 'bedlington_terrier', 'bernese_mountain_dog', 'black-and-tan_coonhound', 'blenheim_spaniel', 'bloodhound', 'bluetick', 'border_collie', 'border_terrier', 'borzoi', 'boston_bull', 'bouvier_des_flandres', 'boxer', 'brabancon_griffon', 'briard', 'brittany_spaniel', 'bull_mastiff', 'cairn', 'cardigan', 'chesapeake_bay_retriever', 'chihuahua', 'chow', 'clumber', 'cocker_spaniel', 'collie', 'curly-coated_retriever', 'dandie_dinmont', 'dhole', 'dingo', 'doberman', 'english_foxhound', 'english_setter', 'english_springer', 'entlebucher', 'eskimo_dog', 'flat-coated_retriever', 'french_bulldog', 'german_shepherd', 'german_short-haired_pointer', 'giant_schnauzer', 'golden_retriever', 'gordon_setter', 'great_dane', 'great_pyrenees', 'greater_swiss_mountain_dog', 'groenendael', 'ibizan_hound', 'irish_setter', 'irish_terrier', 'irish_water_spaniel', 'irish_wolfhound', 'italian_greyhound', 'japanese_spaniel', 'keeshond', 'kelpie', 'kerry_blue_terrier', 'komondor', 'kuvasz', 'labrador_retriever', 'lakeland_terrier', 'leonberg', 'lhasa', 'malamute', 'malinois', 'maltese_dog', 'mexican_hairless', 'miniature_pinscher', 'miniature_poodle', 'miniature_schnauzer', 'newfoundland', 'norfolk_terrier', 'norwegian_elkhound', 'norwich_terrier', 'old_english_sheepdog', 'otterhound', 'papillon', 'pekinese', 'pembroke', 'pomeranian', 'pug', 'redbone', 'rhodesian_ridgeback', 'rottweiler', 'saint_bernard', 'saluki', 'samoyed', 'schipperke', 'scotch_terrier', 'scottish_deerhound', 'sealyham_terrier', 'shetland_sheepdog', 'shih-tzu', 'siberian_husky', 'silky_terrier', 'soft-coated_wheaten_terrier', 'staffordshire_bullterrier', 'standard_poodle', 'standard_schnauzer', 'sussex_spaniel', 'tibetan_mastiff', 'tibetan_terrier', 'toy_poodle', 'toy_terrier', 'vizsla', 'walker_hound', 'weimaraner', 'welsh_springer_spaniel', 'west_highland_white_terrier', 'whippet', 'wire-haired_fox_terrier', 'yorkshire_terrier' ]) # Preprocessing the image def preprocess(image: Image.Image): image = image.resize((224, 224)) array = np.array(image) / 255.0 return np.expand_dims(array, axis=0) # App user interface with st.container(): st.title("🐕 The DogID App") st.markdown("

by Martin Bijloos | MLOwl.ca

", unsafe_allow_html=True) st.write("Upload a photo of a dog and get the breed prediction!") uploaded_file = st.file_uploader( "Upload a dog image", type=["jpg", "jpeg", "png"]) if uploaded_file: image = Image.open(uploaded_file).convert("RGB") st.image(image, caption="Uploaded Image", use_column_width=True) if st.button("Classify"): st.info("Processing...") input_tensor = preprocess(image) prediction = model.predict(input_tensor)[0] top_k = 3 top_indices = prediction.argsort()[-top_k:][::-1] top_classes = class_names[top_indices] top_confidences = prediction[top_indices] st.success("Top Predictions:") for breed, score in zip(top_classes, top_confidences): st.write( f"- **{breed.replace('_', ' ').title()}**: {score:.2%}")