Spaces:
Runtime error
Runtime error
File size: 789 Bytes
faec829 bcd3c3e 601f74f ac76be2 d4e4acc 9cb5903 d4e4acc 98314f0 28dfd94 403a180 98314f0 d4e4acc faec829 ac76be2 09588a6 ee14c57 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 |
import gradio
from transformers import pipeline
def process_swedish_text(text):
# Models from https://huggingface.co/models
# https://huggingface.co/KBLab/bert-base-swedish-cased-ner
nlp = pipeline('ner', model='KBLab/bert-base-swedish-cased-ner', tokenizer='KBLab/bert-base-swedish-cased-ner')
# Run NER
nlp_results = nlp(text)
print('nlp_results:', nlp_results)
# Fix TypeError("'numpy.float32' object is not iterable")
nlp_results_adjusted = map(lambda entity: dict(entity, **{ 'score': float(entity['score']) }), nlp_results)
print('nlp_results_adjusted:', nlp_results_adjusted)
# Return values
return {'entities': list(nlp_results_adjusted)}
gradio_interface = gradio.Interface(fn=process_swedish_text, inputs="text", outputs="json")
gradio_interface.launch()
|