Spaces:
Sleeping
Sleeping
Delete app.py
#4
by
Fede2310
- opened
app.py
DELETED
@@ -1,203 +0,0 @@
|
|
1 |
-
import argparse
|
2 |
-
|
3 |
-
import nltk
|
4 |
-
import torch
|
5 |
-
import numpy as np
|
6 |
-
import gradio as gr
|
7 |
-
from nltk import sent_tokenize
|
8 |
-
|
9 |
-
from transformers import (
|
10 |
-
RobertaTokenizer,
|
11 |
-
RobertaForMaskedLM,
|
12 |
-
LogitsProcessorList,
|
13 |
-
TopKLogitsWarper,
|
14 |
-
TemperatureLogitsWarper,
|
15 |
-
)
|
16 |
-
from transformers.generation_logits_process import TypicalLogitsWarper
|
17 |
-
|
18 |
-
nltk.download('punkt')
|
19 |
-
|
20 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
21 |
-
pretrained = "roberta-large" if device == "cuda" else "roberta-base"
|
22 |
-
tokenizer = RobertaTokenizer.from_pretrained(pretrained)
|
23 |
-
model = RobertaForMaskedLM.from_pretrained(pretrained)
|
24 |
-
model = model.to(device)
|
25 |
-
|
26 |
-
max_len = 20
|
27 |
-
top_k = 100
|
28 |
-
temperature = 1
|
29 |
-
typical_p = 0
|
30 |
-
burnin = 250
|
31 |
-
max_iter = 500
|
32 |
-
|
33 |
-
|
34 |
-
# adapted from https://github.com/nyu-dl/bert-gen
|
35 |
-
def generate_step(out: object,
|
36 |
-
gen_idx: int,
|
37 |
-
top_k: int = top_k,
|
38 |
-
temperature: float = temperature,
|
39 |
-
typical_p: float = typical_p,
|
40 |
-
sample: bool = False) -> list:
|
41 |
-
""" Generate a word from from out[gen_idx]
|
42 |
-
|
43 |
-
args:
|
44 |
-
- out (torch.Tensor): tensor of logits of size batch_size x seq_len x vocab_size
|
45 |
-
- gen_idx (int): location for which to generate
|
46 |
-
- top_k (int): if >0, only sample from the top k most probable words
|
47 |
-
- temperature (float): sampling temperature
|
48 |
-
- typical_p (float): if >0 use typical sampling
|
49 |
-
- sample (bool): if True, sample from full distribution.
|
50 |
-
|
51 |
-
returns:
|
52 |
-
- list: batch_size tokens
|
53 |
-
"""
|
54 |
-
logits = out.logits[:, gen_idx]
|
55 |
-
warpers = LogitsProcessorList()
|
56 |
-
if temperature:
|
57 |
-
warpers.append(TemperatureLogitsWarper(temperature))
|
58 |
-
if top_k > 0:
|
59 |
-
warpers.append(TopKLogitsWarper(top_k))
|
60 |
-
if typical_p > 0:
|
61 |
-
if typical_p >= 1:
|
62 |
-
typical_p = 0.999
|
63 |
-
warpers.append(TypicalLogitsWarper(typical_p))
|
64 |
-
logits = warpers(None, logits)
|
65 |
-
|
66 |
-
if sample:
|
67 |
-
probs = torch.nn.functional.softmax(logits, dim=-1)
|
68 |
-
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
|
69 |
-
else:
|
70 |
-
next_tokens = torch.argmax(logits, dim=-1)
|
71 |
-
|
72 |
-
return next_tokens.tolist()
|
73 |
-
|
74 |
-
|
75 |
-
# adapted from https://github.com/nyu-dl/bert-gen
|
76 |
-
def parallel_sequential_generation(seed_text: str,
|
77 |
-
seed_end_text: str,
|
78 |
-
max_len: int = max_len,
|
79 |
-
top_k: int = top_k,
|
80 |
-
temperature: float = temperature,
|
81 |
-
typical_p: float = typical_p,
|
82 |
-
max_iter: int = max_iter,
|
83 |
-
burnin: int = burnin) -> str:
|
84 |
-
""" Generate text consistent with preceding and following text
|
85 |
-
|
86 |
-
Args:
|
87 |
-
- seed_text (str): preceding text
|
88 |
-
- seed_end_text (str): following text
|
89 |
-
- top_k (int): if >0, only sample from the top k most probable words
|
90 |
-
- temperature (float): sampling temperature
|
91 |
-
- typical_p (float): if >0 use typical sampling
|
92 |
-
- max_iter (int): number of iterations in MCMC
|
93 |
-
- burnin: during burn-in period, sample from full distribution; afterwards take argmax
|
94 |
-
|
95 |
-
Returns:
|
96 |
-
- string: generated text to insert between seed_text and seed_end_text
|
97 |
-
"""
|
98 |
-
inp = tokenizer(seed_text + tokenizer.mask_token * max_len + seed_end_text,
|
99 |
-
return_tensors='pt')
|
100 |
-
masked_tokens = np.where(
|
101 |
-
inp['input_ids'][0].numpy() == tokenizer.mask_token_id)[0]
|
102 |
-
seed_len = masked_tokens[0]
|
103 |
-
inp = inp.to(device)
|
104 |
-
|
105 |
-
for ii in range(max_iter):
|
106 |
-
kk = np.random.randint(0, max_len)
|
107 |
-
idxs = generate_step(model(**inp),
|
108 |
-
gen_idx=seed_len + kk,
|
109 |
-
top_k=top_k if (ii >= burnin) else 0,
|
110 |
-
temperature=temperature,
|
111 |
-
typical_p=typical_p,
|
112 |
-
sample=(ii < burnin))
|
113 |
-
inp['input_ids'][0][seed_len + kk] = idxs[0]
|
114 |
-
|
115 |
-
tokens = inp['input_ids'].cpu().numpy()[0][masked_tokens]
|
116 |
-
tokens = tokens[(np.where((tokens != tokenizer.eos_token_id)
|
117 |
-
& (tokens != tokenizer.bos_token_id)))]
|
118 |
-
return tokenizer.decode(tokens)
|
119 |
-
|
120 |
-
|
121 |
-
def inbertolate(doc: str,
|
122 |
-
max_len: int = max_len,
|
123 |
-
top_k: int = top_k,
|
124 |
-
temperature: float = temperature,
|
125 |
-
typical_p: float = typical_p,
|
126 |
-
max_iter: int = max_iter,
|
127 |
-
burnin: int = burnin) -> str:
|
128 |
-
""" Pad out document generating every other sentence
|
129 |
-
|
130 |
-
Args:
|
131 |
-
- doc (str): document text
|
132 |
-
- max_len (int): number of tokens to insert between sentences
|
133 |
-
- top_k (int): if >0, only sample from the top k most probable words
|
134 |
-
- temperature (float): sampling temperature
|
135 |
-
- typical_p (float): if >0 use typical sampling
|
136 |
-
- max_iter (int): number of iterations in MCMC
|
137 |
-
- burnin: during burn-in period, sample from full distribution; afterwards take argmax
|
138 |
-
|
139 |
-
Returns:
|
140 |
-
- string: generated text to insert between seed_text and seed_end_text
|
141 |
-
"""
|
142 |
-
new_doc = ''
|
143 |
-
paras = doc.split('\n')
|
144 |
-
|
145 |
-
for para in paras:
|
146 |
-
para = sent_tokenize(para)
|
147 |
-
if para == '':
|
148 |
-
new_doc += '\n'
|
149 |
-
continue
|
150 |
-
para += ['']
|
151 |
-
|
152 |
-
for sentence in range(len(para) - 1):
|
153 |
-
new_doc += para[sentence] + ' '
|
154 |
-
new_doc += parallel_sequential_generation(
|
155 |
-
para[sentence],
|
156 |
-
para[sentence + 1],
|
157 |
-
max_len=max_len,
|
158 |
-
top_k=top_k,
|
159 |
-
temperature=float(temperature),
|
160 |
-
typical_p=typical_p,
|
161 |
-
burnin=burnin,
|
162 |
-
max_iter=max_iter) + ' '
|
163 |
-
|
164 |
-
new_doc += '\n'
|
165 |
-
return new_doc
|
166 |
-
|
167 |
-
demo = gr.Interface(
|
168 |
-
fn=inbertolate,
|
169 |
-
title="inBERTolate",
|
170 |
-
description=f"Hit your word count by using BERT ({pretrained}) to pad out your essays!",
|
171 |
-
inputs=[
|
172 |
-
gr.Textbox(label="Text", lines=10),
|
173 |
-
gr.Slider(label="Maximum length to insert between sentences",
|
174 |
-
minimum=1,
|
175 |
-
maximum=40,
|
176 |
-
step=1,
|
177 |
-
value=max_len),
|
178 |
-
gr.Slider(label="Top k", minimum=0, maximum=200, value=top_k),
|
179 |
-
gr.Slider(label="Temperature",
|
180 |
-
minimum=0,
|
181 |
-
maximum=2,
|
182 |
-
value=temperature),
|
183 |
-
gr.Slider(label="Typical p",
|
184 |
-
minimum=0,
|
185 |
-
maximum=1,
|
186 |
-
value=typical_p),
|
187 |
-
gr.Slider(label="Maximum iterations",
|
188 |
-
minimum=0,
|
189 |
-
maximum=1000,
|
190 |
-
value=max_iter),
|
191 |
-
gr.Slider(label="Burn-in",
|
192 |
-
minimum=0,
|
193 |
-
maximum=500,
|
194 |
-
value=burnin),
|
195 |
-
],
|
196 |
-
outputs=gr.Textbox(label="Expanded text", lines=30))
|
197 |
-
|
198 |
-
if __name__ == '__main__':
|
199 |
-
parser = argparse.ArgumentParser()
|
200 |
-
parser.add_argument('--port', type=int)
|
201 |
-
parser.add_argument('--server', type=int)
|
202 |
-
args = parser.parse_args()
|
203 |
-
demo.launch(server_name=args.server or '0.0.0.0', server_port=args.port)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|