Spaces:
Build error
Build error
File size: 13,649 Bytes
44198e0 d7b6953 44198e0 dd884bf 6c83b94 44198e0 5e3672b 44198e0 ae8bccc 8e83c5f ae8bccc 8e83c5f 03649cb 8e83c5f f424b55 8e83c5f f424b55 8e83c5f f424b55 8e83c5f f424b55 8e83c5f 636f8ae 8e83c5f 03649cb 8e83c5f 2f58cc7 8e83c5f f424b55 8e83c5f 636f8ae 3f90511 f424b55 8e83c5f 44198e0 f424b55 8e83c5f 03649cb 8e83c5f 03649cb 8e83c5f 03649cb 2f58cc7 8e83c5f 44198e0 3f90511 2f58cc7 8e83c5f 44198e0 8e83c5f 44198e0 d7b6953 3f90511 8e83c5f f424b55 44198e0 5e3672b 44198e0 6c83b94 5e3672b dd884bf 5e3672b d7b6953 44198e0 d7b6953 44198e0 d7b6953 44198e0 d7b6953 44198e0 d7b6953 44198e0 5e3672b 44198e0 8e83c5f 3f90511 d7b6953 44198e0 8e83c5f 44198e0 d7b6953 ae8bccc 8e83c5f f424b55 44198e0 d7b6953 dd884bf 44198e0 dd884bf 6c83b94 dd884bf 6c83b94 dd884bf 6c83b94 dd884bf 6c83b94 dd884bf 5e3672b dd884bf 5e3672b dd884bf 6c83b94 dd884bf 6c83b94 44198e0 d7b6953 636f8ae 8e83c5f 3f90511 44198e0 d7b6953 44198e0 d7b6953 8e83c5f 3f90511 636f8ae 8e83c5f 6c83b94 8e83c5f 5e3672b ae8bccc 8e83c5f 44198e0 8e83c5f f424b55 68c6844 8e83c5f 44198e0 3f90511 8e83c5f 03649cb 8e83c5f 03649cb 44198e0 d7b6953 44198e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 |
from typing import Dict, List, Any
import requests
from bs4 import BeautifulSoup
from transformers import pipeline
from langchain_community.embeddings import HuggingFaceEmbeddings
import time
import json
import os
from urllib.parse import urlparse, quote_plus
import logging
import random
logger = logging.getLogger(__name__)
class SearchResult:
def __init__(self, title: str, link: str, snippet: str):
self.title = title
self.link = link
self.snippet = snippet
class ModelManager:
"""Manages different AI models for specific tasks"""
def __init__(self):
self.device = "cpu"
self.models = {}
self.load_models()
def load_models(self):
# Use smaller models for CPU deployment
self.models['summarizer'] = pipeline(
"summarization",
model="facebook/bart-base",
device=self.device
)
self.models['embeddings'] = HuggingFaceEmbeddings(
model_name="sentence-transformers/all-MiniLM-L6-v2",
model_kwargs={"device": self.device}
)
class ContentProcessor:
"""Processes and analyzes different types of content"""
def __init__(self):
self.model_manager = ModelManager()
def clean_text(self, text: str) -> str:
"""Clean and normalize text content"""
# Remove extra whitespace and normalize
lines = [line.strip() for line in text.splitlines()]
text = ' '.join(line for line in lines if line)
# Remove redundant spaces
text = ' '.join(text.split())
# Remove common navigation elements
nav_patterns = [
"skip to content",
"search",
"menu",
"navigation",
"subscribe",
"sign in",
"log in"
]
for pattern in nav_patterns:
text = text.replace(pattern, "")
return text
def extract_key_points(self, text: str, max_points: int = 5) -> List[str]:
"""Extract key points from text using the summarizer"""
try:
# Split text into chunks of ~1000 characters
chunks = [text[i:i + 1000] for i in range(0, len(text), 1000)]
all_points = []
for chunk in chunks[:3]: # Process first 3 chunks only
summary = self.model_manager.models['summarizer'](
chunk,
max_length=100,
min_length=30,
do_sample=False
)[0]['summary_text']
# Split into sentences and add as points
sentences = [s.strip() for s in summary.split('.') if s.strip()]
all_points.extend(sentences)
# Return unique points, limited to max_points
unique_points = list(dict.fromkeys(all_points))
return unique_points[:max_points]
except Exception as e:
logger.error(f"Error extracting key points: {str(e)}")
return []
def process_content(self, content: str) -> Dict:
"""Process content and generate insights"""
try:
# Clean the text
cleaned_text = self.clean_text(content)
# Extract key points
key_points = self.extract_key_points(cleaned_text)
# Generate a concise summary
summary = self.model_manager.models['summarizer'](
cleaned_text[:1024],
max_length=150,
min_length=50,
do_sample=False
)[0]['summary_text']
# Extract potential topics/keywords
topics = []
common_topics = [
"quantum computing", "quantum processors", "quantum bits",
"quantum algorithms", "quantum supremacy", "quantum advantage",
"error correction", "quantum hardware", "quantum software",
"quantum research", "quantum applications"
]
for topic in common_topics:
if topic.lower() in cleaned_text.lower():
topics.append(topic)
return {
'summary': summary,
'key_points': key_points,
'topics': topics[:5], # Limit to top 5 topics
'content': cleaned_text
}
except Exception as e:
return {
'summary': f"Error processing content: {str(e)}",
'key_points': [],
'topics': [],
'content': content
}
class WebSearchEngine:
"""Main search engine class"""
def __init__(self):
self.processor = ContentProcessor()
self.session = requests.Session()
self.request_delay = 2.0
self.last_request_time = 0
self.max_retries = 3
self.headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36',
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8',
'Accept-Language': 'en-US,en;q=0.5',
'DNT': '1',
'Connection': 'keep-alive',
'Upgrade-Insecure-Requests': '1'
}
def safe_get(self, url: str, max_retries: int = 3) -> requests.Response:
"""Make a GET request with retries and error handling"""
for i in range(max_retries):
try:
# Add delay between requests
current_time = time.time()
time_since_last = current_time - self.last_request_time
if time_since_last < self.request_delay:
time.sleep(self.request_delay - time_since_last + random.uniform(0.5, 1.5))
response = self.session.get(url, headers=self.headers, timeout=10)
self.last_request_time = time.time()
if response.status_code == 200:
return response
elif response.status_code == 429: # Rate limit
wait_time = (i + 1) * 5
time.sleep(wait_time)
continue
else:
response.raise_for_status()
except Exception as e:
if i == max_retries - 1:
raise
time.sleep((i + 1) * 2)
raise Exception(f"Failed to fetch URL after {max_retries} attempts")
def is_valid_url(self, url: str) -> bool:
"""Check if URL is valid for crawling"""
try:
parsed = urlparse(url)
return bool(parsed.netloc and parsed.scheme)
except:
return False
def get_metadata(self, soup: BeautifulSoup) -> Dict:
"""Extract metadata from page"""
title = soup.title.string if soup.title else "No title"
description = ""
if soup.find("meta", attrs={"name": "description"}):
description = soup.find("meta", attrs={"name": "description"}).get("content", "")
return {
'title': title,
'description': description
}
def process_url(self, url: str) -> Dict:
"""Process a single URL"""
if not self.is_valid_url(url):
return {'error': f"Invalid URL: {url}"}
try:
response = self.safe_get(url)
soup = BeautifulSoup(response.text, 'lxml')
# Extract text content
for script in soup(["script", "style"]):
script.decompose()
text = soup.get_text()
lines = (line.strip() for line in text.splitlines())
chunks = (phrase.strip() for line in lines for phrase in line.split(" "))
content = ' '.join(chunk for chunk in chunks if chunk)
# Get metadata
metadata = self.get_metadata(soup)
# Process content
processed = self.processor.process_content(content)
return {
'url': url,
'title': metadata['title'],
'description': metadata['description'],
'summary': processed['summary'],
'key_points': processed['key_points'],
'topics': processed['topics'],
'content': processed['content']
}
except Exception as e:
return {'error': f"Error processing {url}: {str(e)}"}
def search_duckduckgo(self, query: str, max_results: int = 5) -> List[Dict]:
"""Search DuckDuckGo and parse HTML results"""
search_results = []
try:
# Encode query for URL
encoded_query = quote_plus(query)
# DuckDuckGo HTML search URL
search_url = f'https://html.duckduckgo.com/html/?q={encoded_query}'
# Get search results page
response = self.safe_get(search_url)
soup = BeautifulSoup(response.text, 'lxml')
# Find all result elements
results = soup.find_all('div', {'class': 'result'})
for result in results[:max_results]:
try:
# Extract link
link_elem = result.find('a', {'class': 'result__a'})
if not link_elem:
continue
link = link_elem.get('href', '')
if not link or not self.is_valid_url(link):
continue
# Extract title
title = link_elem.get_text(strip=True)
# Extract snippet
snippet_elem = result.find('a', {'class': 'result__snippet'})
snippet = snippet_elem.get_text(strip=True) if snippet_elem else ""
search_results.append({
'link': link,
'title': title,
'snippet': snippet
})
# Add delay between processing results
time.sleep(random.uniform(0.2, 0.5))
except Exception as e:
logger.warning(f"Error processing search result: {str(e)}")
continue
return search_results
except Exception as e:
logger.error(f"Error during DuckDuckGo search: {str(e)}")
return []
def search(self, query: str, max_results: int = 5) -> Dict:
"""Perform search and process results"""
try:
# Search using DuckDuckGo HTML
search_results = self.search_duckduckgo(query, max_results)
if not search_results:
return {'error': 'No results found'}
results = []
all_key_points = []
all_topics = set()
for result in search_results:
if 'link' in result:
processed = self.process_url(result['link'])
if 'error' not in processed:
results.append(processed)
# Collect key points and topics
if 'key_points' in processed:
all_key_points.extend(processed['key_points'])
if 'topics' in processed:
all_topics.update(processed.get('topics', []))
time.sleep(random.uniform(0.5, 1.0))
if not results:
return {'error': 'Failed to process any search results'}
# Combine all summaries
all_summaries = " ".join([r['summary'] for r in results if 'summary' in r])
# Generate a meta-summary of all content
meta_summary = self.processor.model_manager.models['summarizer'](
all_summaries[:1024],
max_length=200,
min_length=100,
do_sample=False
)[0]['summary_text']
# Get unique key points
unique_key_points = list(dict.fromkeys(all_key_points))
return {
'results': results,
'insights': {
'summary': meta_summary,
'key_points': unique_key_points[:7], # Top 7 key points
'topics': list(all_topics)[:5] # Top 5 topics
},
'follow_up_questions': [
f"What are the recent breakthroughs in {', '.join(list(all_topics)[:2])}?",
f"How do these developments impact the future of quantum computing?",
f"What are the practical applications of these quantum computing advances?"
]
}
except Exception as e:
return {'error': f"Search failed: {str(e)}"}
# Main search function
def search(query: str, max_results: int = 5) -> Dict:
"""Main search function"""
engine = WebSearchEngine()
return engine.search(query, max_results)
|