Spaces:
Build error
Build error
fikird
commited on
Commit
·
2f58cc7
1
Parent(s):
f2c01c1
Improve content processing with better extraction and formatting
Browse files- search_engine.py +114 -105
search_engine.py
CHANGED
@@ -51,111 +51,101 @@ class ContentProcessor:
|
|
51 |
text = ' '.join(text.split())
|
52 |
# Remove common navigation elements
|
53 |
nav_elements = [
|
54 |
-
"
|
55 |
-
"
|
56 |
-
"
|
57 |
-
"
|
58 |
-
"
|
59 |
-
"
|
60 |
-
"
|
61 |
-
"
|
62 |
-
"
|
|
|
|
|
|
|
63 |
]
|
64 |
for element in nav_elements:
|
65 |
-
text = text.replace(element
|
66 |
return text.strip()
|
67 |
|
68 |
def extract_main_content(self, soup: BeautifulSoup) -> str:
|
69 |
-
"""Extract main content from HTML
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
('main', {}),
|
78 |
-
]
|
79 |
-
|
80 |
-
for tag, attrs in priority_tags:
|
81 |
-
elements = soup.find_all(tag, attrs)
|
82 |
-
if elements:
|
83 |
-
content = " ".join(elem.get_text(strip=True) for elem in elements)
|
84 |
-
if content:
|
85 |
-
break
|
86 |
-
|
87 |
-
# If no main content found, try extracting paragraphs
|
88 |
-
if not content:
|
89 |
-
paragraphs = soup.find_all('p')
|
90 |
-
content = " ".join(p.get_text(strip=True) for p in paragraphs if len(p.get_text(strip=True)) > 100)
|
91 |
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
try:
|
97 |
-
# Split into sentences
|
98 |
-
sentences = [s.strip() for s in text.split('.') if len(s.strip()) > 20]
|
99 |
-
if not sentences:
|
100 |
-
return []
|
101 |
|
102 |
-
|
103 |
-
|
104 |
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
max_diff = -1
|
110 |
-
max_idx = -1
|
111 |
-
for i in range(len(sentences)):
|
112 |
-
if i not in selected_indices:
|
113 |
-
# Calculate average difference from selected sentences
|
114 |
-
diffs = [sum((embeddings[i][j] - embeddings[k][j])**2
|
115 |
-
for j in range(len(embeddings[i])))
|
116 |
-
for k in selected_indices]
|
117 |
-
avg_diff = sum(diffs) / len(diffs)
|
118 |
-
if avg_diff > max_diff:
|
119 |
-
max_diff = avg_diff
|
120 |
-
max_idx = i
|
121 |
-
if max_idx != -1:
|
122 |
-
selected_indices.append(max_idx)
|
123 |
|
124 |
-
|
125 |
-
|
126 |
-
logger.error(f"Error extracting key points: {str(e)}")
|
127 |
-
return []
|
128 |
|
129 |
-
def process_content(self, content: str,
|
130 |
"""Process content and generate insights"""
|
131 |
try:
|
132 |
-
#
|
133 |
-
|
134 |
-
content = self.extract_main_content(soup)
|
135 |
-
else:
|
136 |
-
content = self.clean_text(content)
|
137 |
|
138 |
-
#
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
|
146 |
-
#
|
147 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
|
149 |
return {
|
150 |
-
'summary':
|
151 |
-
'
|
152 |
-
'
|
153 |
}
|
154 |
except Exception as e:
|
155 |
return {
|
156 |
'summary': f"Error processing content: {str(e)}",
|
157 |
-
'
|
158 |
-
'
|
159 |
}
|
160 |
|
161 |
class WebSearchEngine:
|
@@ -234,8 +224,11 @@ class WebSearchEngine:
|
|
234 |
# Get metadata
|
235 |
metadata = self.get_metadata(soup)
|
236 |
|
237 |
-
# Process content
|
238 |
-
processed = self.processor.process_content(
|
|
|
|
|
|
|
239 |
|
240 |
return {
|
241 |
'url': url,
|
@@ -249,6 +242,35 @@ class WebSearchEngine:
|
|
249 |
except Exception as e:
|
250 |
return {'error': f"Error processing {url}: {str(e)}"}
|
251 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
252 |
def search_duckduckgo(self, query: str, max_results: int = 5) -> List[Dict]:
|
253 |
"""Search DuckDuckGo and parse HTML results"""
|
254 |
search_results = []
|
@@ -314,35 +336,22 @@ class WebSearchEngine:
|
|
314 |
return {'error': 'No results found'}
|
315 |
|
316 |
results = []
|
317 |
-
all_key_points = []
|
318 |
-
|
319 |
for result in search_results:
|
320 |
if 'link' in result:
|
321 |
processed = self.process_url(result['link'])
|
322 |
if 'error' not in processed:
|
323 |
results.append(processed)
|
324 |
-
if 'key_points' in processed:
|
325 |
-
all_key_points.extend(processed['key_points'])
|
326 |
time.sleep(random.uniform(0.5, 1.0))
|
327 |
-
|
328 |
if not results:
|
329 |
return {'error': 'Failed to process any search results'}
|
330 |
|
331 |
-
#
|
332 |
-
|
333 |
-
|
334 |
-
# Generate overall insights
|
335 |
-
insights = self.processor.model_manager.models['summarizer'](
|
336 |
-
combined_summary,
|
337 |
-
max_length=200,
|
338 |
-
min_length=100,
|
339 |
-
do_sample=False
|
340 |
-
)[0]['summary_text']
|
341 |
|
342 |
return {
|
343 |
-
'results': results,
|
344 |
-
'insights': insights,
|
345 |
-
'key_points': all_key_points[:10], # Top 10 key points
|
346 |
'follow_up_questions': [
|
347 |
f"What are the recent breakthroughs in {query}?",
|
348 |
f"How does {query} impact various industries?",
|
|
|
51 |
text = ' '.join(text.split())
|
52 |
# Remove common navigation elements
|
53 |
nav_elements = [
|
54 |
+
"Skip to content",
|
55 |
+
"Search",
|
56 |
+
"Menu",
|
57 |
+
"Navigation",
|
58 |
+
"Subscribe",
|
59 |
+
"Browse",
|
60 |
+
"Submit",
|
61 |
+
"More",
|
62 |
+
"About",
|
63 |
+
"Contact",
|
64 |
+
"Privacy Policy",
|
65 |
+
"Terms of Use"
|
66 |
]
|
67 |
for element in nav_elements:
|
68 |
+
text = text.replace(element, "")
|
69 |
return text.strip()
|
70 |
|
71 |
def extract_main_content(self, soup: BeautifulSoup) -> str:
|
72 |
+
"""Extract main content from HTML"""
|
73 |
+
# Remove navigation, headers, footers
|
74 |
+
for elem in soup.find_all(['nav', 'header', 'footer', 'script', 'style', 'meta', 'link']):
|
75 |
+
elem.decompose()
|
76 |
+
|
77 |
+
# Try to find main content container
|
78 |
+
main_content = None
|
79 |
+
content_tags = ['article', 'main', '[role="main"]', '.content', '#content', '.post', '.entry']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
+
for tag in content_tags:
|
82 |
+
main_content = soup.select_one(tag)
|
83 |
+
if main_content:
|
84 |
+
break
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
+
if not main_content:
|
87 |
+
main_content = soup
|
88 |
|
89 |
+
# Extract text from paragraphs
|
90 |
+
paragraphs = main_content.find_all('p')
|
91 |
+
if paragraphs:
|
92 |
+
return ' '.join(p.get_text(strip=True) for p in paragraphs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
+
# Fallback to all text if no paragraphs found
|
95 |
+
return main_content.get_text(strip=True)
|
|
|
|
|
96 |
|
97 |
+
def process_content(self, content: str, html_content: str = None) -> Dict:
|
98 |
"""Process content and generate insights"""
|
99 |
try:
|
100 |
+
# Clean content
|
101 |
+
cleaned_content = self.clean_text(content)
|
|
|
|
|
|
|
102 |
|
103 |
+
# If HTML content is provided, try to extract main content
|
104 |
+
if html_content:
|
105 |
+
soup = BeautifulSoup(html_content, 'lxml')
|
106 |
+
main_content = self.extract_main_content(soup)
|
107 |
+
if main_content:
|
108 |
+
cleaned_content = self.clean_text(main_content)
|
109 |
+
|
110 |
+
# Generate summary in chunks if content is too long
|
111 |
+
chunks = [cleaned_content[i:i+1024] for i in range(0, len(cleaned_content), 1024)]
|
112 |
+
summaries = []
|
113 |
+
|
114 |
+
for chunk in chunks[:3]: # Process up to 3 chunks to avoid too long processing
|
115 |
+
try:
|
116 |
+
summary = self.model_manager.models['summarizer'](
|
117 |
+
chunk,
|
118 |
+
max_length=150,
|
119 |
+
min_length=50,
|
120 |
+
do_sample=False
|
121 |
+
)[0]['summary_text']
|
122 |
+
summaries.append(summary)
|
123 |
+
except Exception as e:
|
124 |
+
logger.warning(f"Error summarizing chunk: {str(e)}")
|
125 |
+
continue
|
126 |
|
127 |
+
# Combine summaries
|
128 |
+
final_summary = ' '.join(summaries)
|
129 |
+
|
130 |
+
# Extract key points using bullet points
|
131 |
+
key_points = self.model_manager.models['summarizer'](
|
132 |
+
cleaned_content[:1024],
|
133 |
+
max_length=100,
|
134 |
+
min_length=30,
|
135 |
+
num_beams=4,
|
136 |
+
do_sample=True
|
137 |
+
)[0]['summary_text']
|
138 |
|
139 |
return {
|
140 |
+
'summary': final_summary,
|
141 |
+
'key_points': key_points,
|
142 |
+
'content': cleaned_content
|
143 |
}
|
144 |
except Exception as e:
|
145 |
return {
|
146 |
'summary': f"Error processing content: {str(e)}",
|
147 |
+
'key_points': "",
|
148 |
+
'content': content
|
149 |
}
|
150 |
|
151 |
class WebSearchEngine:
|
|
|
224 |
# Get metadata
|
225 |
metadata = self.get_metadata(soup)
|
226 |
|
227 |
+
# Process content with both text and HTML
|
228 |
+
processed = self.processor.process_content(
|
229 |
+
soup.get_text(),
|
230 |
+
html_content=response.text
|
231 |
+
)
|
232 |
|
233 |
return {
|
234 |
'url': url,
|
|
|
242 |
except Exception as e:
|
243 |
return {'error': f"Error processing {url}: {str(e)}"}
|
244 |
|
245 |
+
def format_results(self, results: List[Dict]) -> Dict:
|
246 |
+
"""Format search results in a user-friendly way"""
|
247 |
+
formatted_insights = []
|
248 |
+
formatted_results = []
|
249 |
+
|
250 |
+
for result in results:
|
251 |
+
if 'error' not in result:
|
252 |
+
# Format key points
|
253 |
+
if result.get('key_points'):
|
254 |
+
points = result['key_points'].split('. ')
|
255 |
+
formatted_points = [f"• {point.strip()}" for point in points if point.strip()]
|
256 |
+
formatted_insights.extend(formatted_points)
|
257 |
+
|
258 |
+
# Format detailed result
|
259 |
+
formatted_result = {
|
260 |
+
'title': result['title'],
|
261 |
+
'url': result['url'],
|
262 |
+
'summary': result['summary'],
|
263 |
+
}
|
264 |
+
formatted_results.append(formatted_result)
|
265 |
+
|
266 |
+
# Remove duplicates while preserving order
|
267 |
+
formatted_insights = list(dict.fromkeys(formatted_insights))
|
268 |
+
|
269 |
+
return {
|
270 |
+
'insights': '\n'.join(formatted_insights[:10]), # Top 10 insights
|
271 |
+
'results': formatted_results
|
272 |
+
}
|
273 |
+
|
274 |
def search_duckduckgo(self, query: str, max_results: int = 5) -> List[Dict]:
|
275 |
"""Search DuckDuckGo and parse HTML results"""
|
276 |
search_results = []
|
|
|
336 |
return {'error': 'No results found'}
|
337 |
|
338 |
results = []
|
|
|
|
|
339 |
for result in search_results:
|
340 |
if 'link' in result:
|
341 |
processed = self.process_url(result['link'])
|
342 |
if 'error' not in processed:
|
343 |
results.append(processed)
|
|
|
|
|
344 |
time.sleep(random.uniform(0.5, 1.0))
|
345 |
+
|
346 |
if not results:
|
347 |
return {'error': 'Failed to process any search results'}
|
348 |
|
349 |
+
# Format results in a user-friendly way
|
350 |
+
formatted = self.format_results(results)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
351 |
|
352 |
return {
|
353 |
+
'results': formatted['results'],
|
354 |
+
'insights': formatted['insights'],
|
|
|
355 |
'follow_up_questions': [
|
356 |
f"What are the recent breakthroughs in {query}?",
|
357 |
f"How does {query} impact various industries?",
|