Spaces:
Running
on
Zero
Running
on
Zero
# Open Source Model Licensed under the Apache License Version 2.0 | |
# and Other Licenses of the Third-Party Components therein: | |
# The below Model in this distribution may have been modified by THL A29 Limited | |
# ("Tencent Modifications"). All Tencent Modifications are Copyright (C) 2024 THL A29 Limited. | |
# Copyright (C) 2024 THL A29 Limited, a Tencent company. All rights reserved. | |
# The below software and/or models in this distribution may have been | |
# modified by THL A29 Limited ("Tencent Modifications"). | |
# All Tencent Modifications are Copyright (C) THL A29 Limited. | |
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT | |
# except for the third-party components listed below. | |
# Hunyuan 3D does not impose any additional limitations beyond what is outlined | |
# in the repsective licenses of these third-party components. | |
# Users must comply with all terms and conditions of original licenses of these third-party | |
# components and must ensure that the usage of the third party components adheres to | |
# all relevant laws and regulations. | |
# For avoidance of doubts, Hunyuan 3D means the large language models and | |
# their software and algorithms, including trained model weights, parameters (including | |
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code, | |
# fine-tuning enabling code and other elements of the foregoing made publicly available | |
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT. | |
from typing import Any, Callable, Dict, List, Optional, Union | |
import numpy | |
import numpy as np | |
import torch | |
import torch.distributed | |
import torch.utils.checkpoint | |
from PIL import Image | |
from diffusers import ( | |
AutoencoderKL, | |
DiffusionPipeline, | |
ImagePipelineOutput | |
) | |
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback | |
from diffusers.image_processor import PipelineImageInput | |
from diffusers.image_processor import VaeImageProcessor | |
from diffusers.pipelines.stable_diffusion.pipeline_output import StableDiffusionPipelineOutput | |
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipeline, retrieve_timesteps, \ | |
rescale_noise_cfg | |
from diffusers.schedulers import KarrasDiffusionSchedulers | |
from diffusers.utils import deprecate | |
from einops import rearrange | |
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer | |
from .unet.modules import UNet2p5DConditionModel | |
def to_rgb_image(maybe_rgba: Image.Image): | |
if maybe_rgba.mode == 'RGB': | |
return maybe_rgba | |
elif maybe_rgba.mode == 'RGBA': | |
rgba = maybe_rgba | |
img = numpy.random.randint(127, 128, size=[rgba.size[1], rgba.size[0], 3], dtype=numpy.uint8) | |
img = Image.fromarray(img, 'RGB') | |
img.paste(rgba, mask=rgba.getchannel('A')) | |
return img | |
else: | |
raise ValueError("Unsupported image type.", maybe_rgba.mode) | |
class HunyuanPaintPipeline(StableDiffusionPipeline): | |
def __init__( | |
self, | |
vae: AutoencoderKL, | |
text_encoder: CLIPTextModel, | |
tokenizer: CLIPTokenizer, | |
unet: UNet2p5DConditionModel, | |
scheduler: KarrasDiffusionSchedulers, | |
feature_extractor: CLIPImageProcessor, | |
safety_checker=None, | |
use_torch_compile=False, | |
): | |
DiffusionPipeline.__init__(self) | |
safety_checker = None | |
self.register_modules( | |
vae=torch.compile(vae) if use_torch_compile else vae, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
unet=unet, | |
scheduler=scheduler, | |
safety_checker=safety_checker, | |
feature_extractor=torch.compile(feature_extractor) if use_torch_compile else feature_extractor, | |
) | |
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) | |
def encode_images(self, images): | |
B = images.shape[0] | |
images = rearrange(images, 'b n c h w -> (b n) c h w') | |
dtype = next(self.vae.parameters()).dtype | |
images = (images - 0.5) * 2.0 | |
posterior = self.vae.encode(images.to(dtype)).latent_dist | |
latents = posterior.sample() * self.vae.config.scaling_factor | |
latents = rearrange(latents, '(b n) c h w -> b n c h w', b=B) | |
return latents | |
def __call__( | |
self, | |
image: Image.Image = None, | |
prompt=None, | |
negative_prompt='watermark, ugly, deformed, noisy, blurry, low contrast', | |
*args, | |
num_images_per_prompt: Optional[int] = 1, | |
guidance_scale=2.0, | |
output_type: Optional[str] = "pil", | |
width=512, | |
height=512, | |
num_inference_steps=28, | |
return_dict=True, | |
**cached_condition, | |
): | |
if image is None: | |
raise ValueError("Inputting embeddings not supported for this pipeline. Please pass an image.") | |
assert not isinstance(image, torch.Tensor) | |
image = to_rgb_image(image) | |
image_vae = torch.tensor(np.array(image) / 255.0) | |
image_vae = image_vae.unsqueeze(0).permute(0, 3, 1, 2).unsqueeze(0) | |
image_vae = image_vae.to(device=self.vae.device, dtype=self.vae.dtype) | |
batch_size = image_vae.shape[0] | |
assert batch_size == 1 | |
assert num_images_per_prompt == 1 | |
ref_latents = self.encode_images(image_vae) | |
def convert_pil_list_to_tensor(images): | |
bg_c = [1., 1., 1.] | |
images_tensor = [] | |
for batch_imgs in images: | |
view_imgs = [] | |
for pil_img in batch_imgs: | |
img = numpy.asarray(pil_img, dtype=numpy.float32) / 255. | |
if img.shape[2] > 3: | |
alpha = img[:, :, 3:] | |
img = img[:, :, :3] * alpha + bg_c * (1 - alpha) | |
img = torch.from_numpy(img).permute(2, 0, 1).unsqueeze(0).contiguous().half().to("cuda") | |
view_imgs.append(img) | |
view_imgs = torch.cat(view_imgs, dim=0) | |
images_tensor.append(view_imgs.unsqueeze(0)) | |
images_tensor = torch.cat(images_tensor, dim=0) | |
return images_tensor | |
if "normal_imgs" in cached_condition: | |
if isinstance(cached_condition["normal_imgs"], List): | |
cached_condition["normal_imgs"] = convert_pil_list_to_tensor(cached_condition["normal_imgs"]) | |
cached_condition['normal_imgs'] = self.encode_images(cached_condition["normal_imgs"]) | |
if "position_imgs" in cached_condition: | |
if isinstance(cached_condition["position_imgs"], List): | |
cached_condition["position_imgs"] = convert_pil_list_to_tensor(cached_condition["position_imgs"]) | |
cached_condition["position_imgs"] = self.encode_images(cached_condition["position_imgs"]) | |
if 'camera_info_gen' in cached_condition: | |
camera_info = cached_condition['camera_info_gen'] # B,N | |
if isinstance(camera_info, List): | |
camera_info = torch.tensor(camera_info) | |
camera_info = camera_info.to(image_vae.device).to(torch.int64) | |
cached_condition['camera_info_gen'] = camera_info | |
if 'camera_info_ref' in cached_condition: | |
camera_info = cached_condition['camera_info_ref'] # B,N | |
if isinstance(camera_info, List): | |
camera_info = torch.tensor(camera_info) | |
camera_info = camera_info.to(image_vae.device).to(torch.int64) | |
cached_condition['camera_info_ref'] = camera_info | |
cached_condition['ref_latents'] = ref_latents | |
if guidance_scale > 1: | |
negative_ref_latents = torch.zeros_like(cached_condition['ref_latents']) | |
cached_condition['ref_latents'] = torch.cat([negative_ref_latents, cached_condition['ref_latents']]) | |
cached_condition['ref_scale'] = torch.as_tensor([0.0, 1.0]).to(cached_condition['ref_latents']) | |
if "normal_imgs" in cached_condition: | |
cached_condition['normal_imgs'] = torch.cat( | |
(cached_condition['normal_imgs'], cached_condition['normal_imgs'])) | |
if "position_imgs" in cached_condition: | |
cached_condition['position_imgs'] = torch.cat( | |
(cached_condition['position_imgs'], cached_condition['position_imgs'])) | |
if 'position_maps' in cached_condition: | |
cached_condition['position_maps'] = torch.cat( | |
(cached_condition['position_maps'], cached_condition['position_maps'])) | |
if 'camera_info_gen' in cached_condition: | |
cached_condition['camera_info_gen'] = torch.cat( | |
(cached_condition['camera_info_gen'], cached_condition['camera_info_gen'])) | |
if 'camera_info_ref' in cached_condition: | |
cached_condition['camera_info_ref'] = torch.cat( | |
(cached_condition['camera_info_ref'], cached_condition['camera_info_ref'])) | |
prompt_embeds = self.unet.learned_text_clip_gen.repeat(num_images_per_prompt, 1, 1) | |
negative_prompt_embeds = torch.zeros_like(prompt_embeds) | |
latents: torch.Tensor = self.denoise( | |
None, | |
*args, | |
cross_attention_kwargs=None, | |
guidance_scale=guidance_scale, | |
num_images_per_prompt=num_images_per_prompt, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
num_inference_steps=num_inference_steps, | |
output_type='latent', | |
width=width, | |
height=height, | |
**cached_condition | |
).images | |
if not output_type == "latent": | |
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] | |
else: | |
image = latents | |
image = self.image_processor.postprocess(image, output_type=output_type) | |
if not return_dict: | |
return (image,) | |
return ImagePipelineOutput(images=image) | |
def denoise( | |
self, | |
prompt: Union[str, List[str]] = None, | |
height: Optional[int] = None, | |
width: Optional[int] = None, | |
num_inference_steps: int = 50, | |
timesteps: List[int] = None, | |
sigmas: List[float] = None, | |
guidance_scale: float = 7.5, | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
num_images_per_prompt: Optional[int] = 1, | |
eta: float = 0.0, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.Tensor] = None, | |
prompt_embeds: Optional[torch.Tensor] = None, | |
negative_prompt_embeds: Optional[torch.Tensor] = None, | |
ip_adapter_image: Optional[PipelineImageInput] = None, | |
ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
guidance_rescale: float = 0.0, | |
clip_skip: Optional[int] = None, | |
callback_on_step_end: Optional[ | |
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks] | |
] = None, | |
callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
**kwargs, | |
): | |
r""" | |
The call function to the pipeline for generation. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. | |
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): | |
The height in pixels of the generated image. | |
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): | |
The width in pixels of the generated image. | |
num_inference_steps (`int`, *optional*, defaults to 50): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. | |
timesteps (`List[int]`, *optional*): | |
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument | |
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is | |
passed will be used. Must be in descending order. | |
sigmas (`List[float]`, *optional*): | |
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in | |
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed | |
will be used. | |
guidance_scale (`float`, *optional*, defaults to 7.5): | |
A higher guidance scale value encourages the model to generate images closely linked to the text | |
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts to guide what to not include in image generation. If not defined, you need to | |
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). | |
num_images_per_prompt (`int`, *optional*, defaults to 1): | |
The number of images to generate per prompt. | |
eta (`float`, *optional*, defaults to 0.0): | |
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies | |
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. | |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make | |
generation deterministic. | |
latents (`torch.Tensor`, *optional*): | |
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image | |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
tensor is generated by sampling using the supplied random `generator`. | |
prompt_embeds (`torch.Tensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not | |
provided, text embeddings are generated from the `prompt` input argument. | |
negative_prompt_embeds (`torch.Tensor`, *optional*): | |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If | |
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. | |
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters. | |
ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*): | |
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of | |
IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should | |
contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not | |
provided, embeddings are computed from the `ip_adapter_image` input argument. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generated image. Choose between `PIL.Image` or `np.array`. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | |
plain tuple. | |
cross_attention_kwargs (`dict`, *optional*): | |
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in | |
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
guidance_rescale (`float`, *optional*, defaults to 0.0): | |
Guidance rescale factor from [Common Diffusion Noise Schedules and Sample Steps are | |
Flawed](https://arxiv.org/pdf/2305.08891.pdf). Guidance rescale factor should fix overexposure when | |
using zero terminal SNR. | |
clip_skip (`int`, *optional*): | |
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that | |
the output of the pre-final layer will be used for computing the prompt embeddings. | |
callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*): | |
A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of | |
each denoising step during the inference. with the following arguments: `callback_on_step_end(self: | |
DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a | |
list of all tensors as specified by `callback_on_step_end_tensor_inputs`. | |
callback_on_step_end_tensor_inputs (`List`, *optional*): | |
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list | |
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the | |
`._callback_tensor_inputs` attribute of your pipeline class. | |
Examples: | |
Returns: | |
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: | |
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, | |
otherwise a `tuple` is returned where the first element is a list with the generated images and the | |
second element is a list of `bool`s indicating whether the corresponding generated image contains | |
"not-safe-for-work" (nsfw) content. | |
""" | |
callback = kwargs.pop("callback", None) | |
callback_steps = kwargs.pop("callback_steps", None) | |
if callback is not None: | |
deprecate( | |
"callback", | |
"1.0.0", | |
"Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`", | |
) | |
if callback_steps is not None: | |
deprecate( | |
"callback_steps", | |
"1.0.0", | |
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`", | |
) | |
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): | |
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs | |
# 0. Default height and width to unet | |
height = height or self.unet.config.sample_size * self.vae_scale_factor | |
width = width or self.unet.config.sample_size * self.vae_scale_factor | |
# to deal with lora scaling and other possible forward hooks | |
# 1. Check inputs. Raise error if not correct | |
self.check_inputs( | |
prompt, | |
height, | |
width, | |
callback_steps, | |
negative_prompt, | |
prompt_embeds, | |
negative_prompt_embeds, | |
ip_adapter_image, | |
ip_adapter_image_embeds, | |
callback_on_step_end_tensor_inputs, | |
) | |
self._guidance_scale = guidance_scale | |
self._guidance_rescale = guidance_rescale | |
self._clip_skip = clip_skip | |
self._cross_attention_kwargs = cross_attention_kwargs | |
self._interrupt = False | |
# 2. Define call parameters | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
device = self._execution_device | |
# 3. Encode input prompt | |
lora_scale = ( | |
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None | |
) | |
prompt_embeds, negative_prompt_embeds = self.encode_prompt( | |
prompt, | |
device, | |
num_images_per_prompt, | |
self.do_classifier_free_guidance, | |
negative_prompt, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
lora_scale=lora_scale, | |
clip_skip=self.clip_skip, | |
) | |
# For classifier free guidance, we need to do two forward passes. | |
# Here we concatenate the unconditional and text embeddings into a single batch | |
# to avoid doing two forward passes | |
if self.do_classifier_free_guidance: | |
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) | |
if ip_adapter_image is not None or ip_adapter_image_embeds is not None: | |
image_embeds = self.prepare_ip_adapter_image_embeds( | |
ip_adapter_image, | |
ip_adapter_image_embeds, | |
device, | |
batch_size * num_images_per_prompt, | |
self.do_classifier_free_guidance, | |
) | |
# 4. Prepare timesteps | |
timesteps, num_inference_steps = retrieve_timesteps( | |
self.scheduler, num_inference_steps, device, timesteps, sigmas | |
) | |
assert num_images_per_prompt == 1 | |
# 5. Prepare latent variables | |
num_channels_latents = self.unet.config.in_channels | |
latents = self.prepare_latents( | |
batch_size * kwargs['num_in_batch'], # num_images_per_prompt, | |
num_channels_latents, | |
height, | |
width, | |
prompt_embeds.dtype, | |
device, | |
generator, | |
latents, | |
) | |
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
# 6.1 Add image embeds for IP-Adapter | |
added_cond_kwargs = ( | |
{"image_embeds": image_embeds} | |
if (ip_adapter_image is not None or ip_adapter_image_embeds is not None) | |
else None | |
) | |
# 6.2 Optionally get Guidance Scale Embedding | |
timestep_cond = None | |
if self.unet.config.time_cond_proj_dim is not None: | |
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt) | |
timestep_cond = self.get_guidance_scale_embedding( | |
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim | |
).to(device=device, dtype=latents.dtype) | |
# 7. Denoising loop | |
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
self._num_timesteps = len(timesteps) | |
with self.progress_bar(total=num_inference_steps) as progress_bar: | |
for i, t in enumerate(timesteps): | |
if self.interrupt: | |
continue | |
# expand the latents if we are doing classifier free guidance | |
latents = rearrange(latents, '(b n) c h w -> b n c h w', n=kwargs['num_in_batch']) | |
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents | |
latent_model_input = rearrange(latent_model_input, 'b n c h w -> (b n) c h w') | |
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
latent_model_input = rearrange(latent_model_input, '(b n) c h w ->b n c h w', n=kwargs['num_in_batch']) | |
# predict the noise residual | |
noise_pred = self.unet( | |
latent_model_input, | |
t, | |
encoder_hidden_states=prompt_embeds, | |
timestep_cond=timestep_cond, | |
cross_attention_kwargs=self.cross_attention_kwargs, | |
added_cond_kwargs=added_cond_kwargs, | |
return_dict=False, **kwargs | |
)[0] | |
latents = rearrange(latents, 'b n c h w -> (b n) c h w') | |
# perform guidance | |
if self.do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) | |
if self.do_classifier_free_guidance and self.guidance_rescale > 0.0: | |
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf | |
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = \ | |
self.scheduler.step(noise_pred, t, latents[:, :num_channels_latents, :, :], **extra_step_kwargs, | |
return_dict=False)[0] | |
if callback_on_step_end is not None: | |
callback_kwargs = {} | |
for k in callback_on_step_end_tensor_inputs: | |
callback_kwargs[k] = locals()[k] | |
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
latents = callback_outputs.pop("latents", latents) | |
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) | |
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) | |
# call the callback, if provided | |
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
progress_bar.update() | |
if callback is not None and i % callback_steps == 0: | |
step_idx = i // getattr(self.scheduler, "order", 1) | |
callback(step_idx, t, latents) | |
if not output_type == "latent": | |
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[ | |
0 | |
] | |
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) | |
else: | |
image = latents | |
has_nsfw_concept = None | |
if has_nsfw_concept is None: | |
do_denormalize = [True] * image.shape[0] | |
else: | |
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] | |
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) | |
# Offload all models | |
self.maybe_free_model_hooks() | |
if not return_dict: | |
return (image, has_nsfw_concept) | |
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) | |