# Open Source Model Licensed under the Apache License Version 2.0 # and Other Licenses of the Third-Party Components therein: # The below Model in this distribution may have been modified by THL A29 Limited # ("Tencent Modifications"). All Tencent Modifications are Copyright (C) 2024 THL A29 Limited. # Copyright (C) 2024 THL A29 Limited, a Tencent company. All rights reserved. # The below software and/or models in this distribution may have been # modified by THL A29 Limited ("Tencent Modifications"). # All Tencent Modifications are Copyright (C) THL A29 Limited. # Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT # except for the third-party components listed below. # Hunyuan 3D does not impose any additional limitations beyond what is outlined # in the repsective licenses of these third-party components. # Users must comply with all terms and conditions of original licenses of these third-party # components and must ensure that the usage of the third party components adheres to # all relevant laws and regulations. # For avoidance of doubts, Hunyuan 3D means the large language models and # their software and algorithms, including trained model weights, parameters (including # optimizer states), machine-learning model code, inference-enabling code, training-enabling code, # fine-tuning enabling code and other elements of the foregoing made publicly available # by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT. from typing import Any, Callable, Dict, List, Optional, Union import numpy import numpy as np import torch import torch.distributed import torch.utils.checkpoint from PIL import Image from diffusers import ( AutoencoderKL, DiffusionPipeline, ImagePipelineOutput ) from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback from diffusers.image_processor import PipelineImageInput from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.stable_diffusion.pipeline_output import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipeline, retrieve_timesteps, \ rescale_noise_cfg from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import deprecate from einops import rearrange from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from .unet.modules import UNet2p5DConditionModel def to_rgb_image(maybe_rgba: Image.Image): if maybe_rgba.mode == 'RGB': return maybe_rgba elif maybe_rgba.mode == 'RGBA': rgba = maybe_rgba img = numpy.random.randint(127, 128, size=[rgba.size[1], rgba.size[0], 3], dtype=numpy.uint8) img = Image.fromarray(img, 'RGB') img.paste(rgba, mask=rgba.getchannel('A')) return img else: raise ValueError("Unsupported image type.", maybe_rgba.mode) class HunyuanPaintPipeline(StableDiffusionPipeline): def __init__( self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: UNet2p5DConditionModel, scheduler: KarrasDiffusionSchedulers, feature_extractor: CLIPImageProcessor, safety_checker=None, use_torch_compile=False, ): DiffusionPipeline.__init__(self) safety_checker = None self.register_modules( vae=torch.compile(vae) if use_torch_compile else vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=torch.compile(feature_extractor) if use_torch_compile else feature_extractor, ) self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) @torch.no_grad() def encode_images(self, images): B = images.shape[0] images = rearrange(images, 'b n c h w -> (b n) c h w') dtype = next(self.vae.parameters()).dtype images = (images - 0.5) * 2.0 posterior = self.vae.encode(images.to(dtype)).latent_dist latents = posterior.sample() * self.vae.config.scaling_factor latents = rearrange(latents, '(b n) c h w -> b n c h w', b=B) return latents @torch.no_grad() def __call__( self, image: Image.Image = None, prompt=None, negative_prompt='watermark, ugly, deformed, noisy, blurry, low contrast', *args, num_images_per_prompt: Optional[int] = 1, guidance_scale=2.0, output_type: Optional[str] = "pil", width=512, height=512, num_inference_steps=28, return_dict=True, **cached_condition, ): if image is None: raise ValueError("Inputting embeddings not supported for this pipeline. Please pass an image.") assert not isinstance(image, torch.Tensor) image = to_rgb_image(image) image_vae = torch.tensor(np.array(image) / 255.0) image_vae = image_vae.unsqueeze(0).permute(0, 3, 1, 2).unsqueeze(0) image_vae = image_vae.to(device=self.vae.device, dtype=self.vae.dtype) batch_size = image_vae.shape[0] assert batch_size == 1 assert num_images_per_prompt == 1 ref_latents = self.encode_images(image_vae) def convert_pil_list_to_tensor(images): bg_c = [1., 1., 1.] images_tensor = [] for batch_imgs in images: view_imgs = [] for pil_img in batch_imgs: img = numpy.asarray(pil_img, dtype=numpy.float32) / 255. if img.shape[2] > 3: alpha = img[:, :, 3:] img = img[:, :, :3] * alpha + bg_c * (1 - alpha) img = torch.from_numpy(img).permute(2, 0, 1).unsqueeze(0).contiguous().half().to("cuda") view_imgs.append(img) view_imgs = torch.cat(view_imgs, dim=0) images_tensor.append(view_imgs.unsqueeze(0)) images_tensor = torch.cat(images_tensor, dim=0) return images_tensor if "normal_imgs" in cached_condition: if isinstance(cached_condition["normal_imgs"], List): cached_condition["normal_imgs"] = convert_pil_list_to_tensor(cached_condition["normal_imgs"]) cached_condition['normal_imgs'] = self.encode_images(cached_condition["normal_imgs"]) if "position_imgs" in cached_condition: if isinstance(cached_condition["position_imgs"], List): cached_condition["position_imgs"] = convert_pil_list_to_tensor(cached_condition["position_imgs"]) cached_condition["position_imgs"] = self.encode_images(cached_condition["position_imgs"]) if 'camera_info_gen' in cached_condition: camera_info = cached_condition['camera_info_gen'] # B,N if isinstance(camera_info, List): camera_info = torch.tensor(camera_info) camera_info = camera_info.to(image_vae.device).to(torch.int64) cached_condition['camera_info_gen'] = camera_info if 'camera_info_ref' in cached_condition: camera_info = cached_condition['camera_info_ref'] # B,N if isinstance(camera_info, List): camera_info = torch.tensor(camera_info) camera_info = camera_info.to(image_vae.device).to(torch.int64) cached_condition['camera_info_ref'] = camera_info cached_condition['ref_latents'] = ref_latents if guidance_scale > 1: negative_ref_latents = torch.zeros_like(cached_condition['ref_latents']) cached_condition['ref_latents'] = torch.cat([negative_ref_latents, cached_condition['ref_latents']]) cached_condition['ref_scale'] = torch.as_tensor([0.0, 1.0]).to(cached_condition['ref_latents']) if "normal_imgs" in cached_condition: cached_condition['normal_imgs'] = torch.cat( (cached_condition['normal_imgs'], cached_condition['normal_imgs'])) if "position_imgs" in cached_condition: cached_condition['position_imgs'] = torch.cat( (cached_condition['position_imgs'], cached_condition['position_imgs'])) if 'position_maps' in cached_condition: cached_condition['position_maps'] = torch.cat( (cached_condition['position_maps'], cached_condition['position_maps'])) if 'camera_info_gen' in cached_condition: cached_condition['camera_info_gen'] = torch.cat( (cached_condition['camera_info_gen'], cached_condition['camera_info_gen'])) if 'camera_info_ref' in cached_condition: cached_condition['camera_info_ref'] = torch.cat( (cached_condition['camera_info_ref'], cached_condition['camera_info_ref'])) prompt_embeds = self.unet.learned_text_clip_gen.repeat(num_images_per_prompt, 1, 1) negative_prompt_embeds = torch.zeros_like(prompt_embeds) latents: torch.Tensor = self.denoise( None, *args, cross_attention_kwargs=None, guidance_scale=guidance_scale, num_images_per_prompt=num_images_per_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, num_inference_steps=num_inference_steps, output_type='latent', width=width, height=height, **cached_condition ).images if not output_type == "latent": image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] else: image = latents image = self.image_processor.postprocess(image, output_type=output_type) if not return_dict: return (image,) return ImagePipelineOutput(images=image) def denoise( self, prompt: Union[str, List[str]] = None, height: Optional[int] = None, width: Optional[int] = None, num_inference_steps: int = 50, timesteps: List[int] = None, sigmas: List[float] = None, guidance_scale: float = 7.5, negative_prompt: Optional[Union[str, List[str]]] = None, num_images_per_prompt: Optional[int] = 1, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.Tensor] = None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, ip_adapter_image: Optional[PipelineImageInput] = None, ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None, output_type: Optional[str] = "pil", return_dict: bool = True, cross_attention_kwargs: Optional[Dict[str, Any]] = None, guidance_rescale: float = 0.0, clip_skip: Optional[int] = None, callback_on_step_end: Optional[ Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks] ] = None, callback_on_step_end_tensor_inputs: List[str] = ["latents"], **kwargs, ): r""" The call function to the pipeline for generation. Args: prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): The height in pixels of the generated image. width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): The width in pixels of the generated image. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. timesteps (`List[int]`, *optional*): Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed will be used. Must be in descending order. sigmas (`List[float]`, *optional*): Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed will be used. guidance_scale (`float`, *optional*, defaults to 7.5): A higher guidance scale value encourages the model to generate images closely linked to the text `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide what to not include in image generation. If not defined, you need to pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.Tensor`, *optional*): Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor is generated by sampling using the supplied random `generator`. prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, text embeddings are generated from the `prompt` input argument. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters. ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*): Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not provided, embeddings are computed from the `ip_adapter_image` input argument. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generated image. Choose between `PIL.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a plain tuple. cross_attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). guidance_rescale (`float`, *optional*, defaults to 0.0): Guidance rescale factor from [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). Guidance rescale factor should fix overexposure when using zero terminal SNR. clip_skip (`int`, *optional*): Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings. callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*): A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of each denoising step during the inference. with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by `callback_on_step_end_tensor_inputs`. callback_on_step_end_tensor_inputs (`List`, *optional*): The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the `._callback_tensor_inputs` attribute of your pipeline class. Examples: Returns: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list with the generated images and the second element is a list of `bool`s indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content. """ callback = kwargs.pop("callback", None) callback_steps = kwargs.pop("callback_steps", None) if callback is not None: deprecate( "callback", "1.0.0", "Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`", ) if callback_steps is not None: deprecate( "callback_steps", "1.0.0", "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`", ) if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs # 0. Default height and width to unet height = height or self.unet.config.sample_size * self.vae_scale_factor width = width or self.unet.config.sample_size * self.vae_scale_factor # to deal with lora scaling and other possible forward hooks # 1. Check inputs. Raise error if not correct self.check_inputs( prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds, ip_adapter_image, ip_adapter_image_embeds, callback_on_step_end_tensor_inputs, ) self._guidance_scale = guidance_scale self._guidance_rescale = guidance_rescale self._clip_skip = clip_skip self._cross_attention_kwargs = cross_attention_kwargs self._interrupt = False # 2. Define call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] device = self._execution_device # 3. Encode input prompt lora_scale = ( self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None ) prompt_embeds, negative_prompt_embeds = self.encode_prompt( prompt, device, num_images_per_prompt, self.do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=lora_scale, clip_skip=self.clip_skip, ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes if self.do_classifier_free_guidance: prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) if ip_adapter_image is not None or ip_adapter_image_embeds is not None: image_embeds = self.prepare_ip_adapter_image_embeds( ip_adapter_image, ip_adapter_image_embeds, device, batch_size * num_images_per_prompt, self.do_classifier_free_guidance, ) # 4. Prepare timesteps timesteps, num_inference_steps = retrieve_timesteps( self.scheduler, num_inference_steps, device, timesteps, sigmas ) assert num_images_per_prompt == 1 # 5. Prepare latent variables num_channels_latents = self.unet.config.in_channels latents = self.prepare_latents( batch_size * kwargs['num_in_batch'], # num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents, ) # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) # 6.1 Add image embeds for IP-Adapter added_cond_kwargs = ( {"image_embeds": image_embeds} if (ip_adapter_image is not None or ip_adapter_image_embeds is not None) else None ) # 6.2 Optionally get Guidance Scale Embedding timestep_cond = None if self.unet.config.time_cond_proj_dim is not None: guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt) timestep_cond = self.get_guidance_scale_embedding( guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim ).to(device=device, dtype=latents.dtype) # 7. Denoising loop num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order self._num_timesteps = len(timesteps) with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): if self.interrupt: continue # expand the latents if we are doing classifier free guidance latents = rearrange(latents, '(b n) c h w -> b n c h w', n=kwargs['num_in_batch']) latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents latent_model_input = rearrange(latent_model_input, 'b n c h w -> (b n) c h w') latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) latent_model_input = rearrange(latent_model_input, '(b n) c h w ->b n c h w', n=kwargs['num_in_batch']) # predict the noise residual noise_pred = self.unet( latent_model_input, t, encoder_hidden_states=prompt_embeds, timestep_cond=timestep_cond, cross_attention_kwargs=self.cross_attention_kwargs, added_cond_kwargs=added_cond_kwargs, return_dict=False, **kwargs )[0] latents = rearrange(latents, 'b n c h w -> (b n) c h w') # perform guidance if self.do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) if self.do_classifier_free_guidance and self.guidance_rescale > 0.0: # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale) # compute the previous noisy sample x_t -> x_t-1 latents = \ self.scheduler.step(noise_pred, t, latents[:, :num_channels_latents, :, :], **extra_step_kwargs, return_dict=False)[0] if callback_on_step_end is not None: callback_kwargs = {} for k in callback_on_step_end_tensor_inputs: callback_kwargs[k] = locals()[k] callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) latents = callback_outputs.pop("latents", latents) prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) # call the callback, if provided if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() if callback is not None and i % callback_steps == 0: step_idx = i // getattr(self.scheduler, "order", 1) callback(step_idx, t, latents) if not output_type == "latent": image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[ 0 ] image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) else: image = latents has_nsfw_concept = None if has_nsfw_concept is None: do_denormalize = [True] * image.shape[0] else: do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) # Offload all models self.maybe_free_model_hooks() if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)