Spaces:
Running
Running
import gradio as gr | |
import librosa | |
import numpy as np | |
import torch | |
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan | |
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts") | |
model = SpeechT5ForTextToSpeech.from_pretrained("tejas1206/speecht5_tts_ta") | |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan") | |
speaker_embeddings = { | |
"BDL": "speaker/cmu_us_bdl_arctic-wav-arctic_a0009.npy", | |
"CLB": "speaker/cmu_us_clb_arctic-wav-arctic_a0144.npy", | |
"KSP": "speaker/cmu_us_ksp_arctic-wav-arctic_b0087.npy", | |
"RMS": "speaker/cmu_us_rms_arctic-wav-arctic_b0353.npy", | |
"SLT": "speaker/cmu_us_slt_arctic-wav-arctic_a0508.npy", | |
} | |
def convert_text(sentence): | |
replacements = [ | |
(' ', ' '), # Space | |
('&', 'and'), # Ampersand | |
('_', '_'), # Underscore | |
('`', '`'), # Backtick | |
('·', '.'), # Middle dot | |
('á', 'a'), # Accent on 'a' | |
('ô', 'o'), # Accent on 'o' | |
('š', 's'), # 'S' with caron (soft s sound) | |
('ஃ', 'akh'), # Aytham (Tamil diacritic) | |
('அ', 'a'), # Tamil letter A | |
('ஆ', 'aa'), # Tamil letter AA | |
('இ', 'i'), # Tamil letter I | |
('ஈ', 'ii'), # Tamil letter II | |
('உ', 'u'), # Tamil letter U | |
('ஊ', 'uu'), # Tamil letter UU | |
('எ', 'e'), # Tamil letter E | |
('ஏ', 'ee'), # Tamil letter EE | |
('ஐ', 'ai'), # Tamil letter AI | |
('ஒ', 'o'), # Tamil letter O | |
('ஓ', 'oo'), # Tamil letter OO | |
('ஔ', 'au'), # Tamil letter AU | |
('க', 'ka'), # Tamil letter KA | |
('ங', 'nga'), # Tamil letter NGA | |
('ச', 'cha'), # Tamil letter CHA | |
('ஜ', 'ja'), # Tamil letter JA | |
('ஞ', 'nya'), # Tamil letter NYA | |
('ட', 'ta'), # Tamil letter TTA (retroflex T) | |
('ண', 'na'), # Tamil letter NNA (retroflex N) | |
('த', 'tha'), # Tamil letter THA | |
('ந', 'na'), # Tamil letter NA | |
('ன', 'na'), # Tamil letter NN (alveolar N) | |
('ப', 'pa'), # Tamil letter PA | |
('ம', 'ma'), # Tamil letter MA | |
('ய', 'ya'), # Tamil letter YA | |
('ர', 'ra'), # Tamil letter RA | |
('ற', 'rra'), # Tamil letter RRA (retroflex R) | |
('ல', 'la'), # Tamil letter LA | |
('ள', 'lla'), # Tamil letter LLA (retroflex L) | |
('ழ', 'zha'), # Tamil letter LLA (unique Tamil letter) | |
('வ', 'va'), # Tamil letter VA | |
('ஷ', 'sha'), # Tamil letter SHA | |
('ஸ', 'sa'), # Tamil letter SA | |
('ஹ', 'ha'), # Tamil letter HA | |
('ா', 'aa'), # Long A (Tamil vowel extension) | |
('ி', 'i'), # Short I (Tamil vowel extension) | |
('ீ', 'ii'), # Long I (Tamil vowel extension) | |
('ு', 'u'), # Short U (Tamil vowel extension) | |
('ூ', 'uu'), # Long U (Tamil vowel extension) | |
('ெ', 'e'), # Short E (Tamil vowel extension) | |
('ே', 'ee'), # Long E (Tamil vowel extension) | |
('ை', 'ai'), # Tamil diphthong AI | |
('ொ', 'o'), # Short O (Tamil vowel extension) | |
('ோ', 'oo'), # Long O (Tamil vowel extension) | |
('ௌ', 'au'), # Tamil diphthong AU | |
('்', ''), # Tamil virama (removes inherent vowel) | |
('ௗ', 'au'), # Rare Tamil vowel diacritic | |
('ഥ', 'tha'), # Malayalam letter THA | |
('–', '-'), # En dash | |
('‘', "'"), # Left single quotation mark | |
('’', "'"), # Right single quotation mark | |
('‚', ','), # Single low quotation mark | |
('“', '"'), # Left double quotation mark | |
('”', '"'), # Right double quotation mark | |
('•', '.'), # Bullet point | |
('…', '...'), # Ellipsis | |
('′', "'"), # Prime (minutes or feet symbol) | |
('″', '"'), # Double prime (seconds or inches symbol) | |
('●', '.'), # Filled bullet | |
('◯', 'o'), # Circle symbol | |
] | |
for src, dst in replacements: | |
sentence = sentence.replace(src, dst) | |
return sentence | |
def predict(text, speaker): | |
if len(text.strip()) == 0: | |
return (16000, np.zeros(0).astype(np.int16)) | |
text = convert_text(text) | |
inputs = processor(text=text, return_tensors="pt") | |
# limit input length | |
input_ids = inputs["input_ids"] | |
input_ids = input_ids[..., :model.config.max_text_positions] | |
if speaker == "Surprise Me!": | |
# load one of the provided speaker embeddings at random | |
idx = np.random.randint(len(speaker_embeddings)) | |
key = list(speaker_embeddings.keys())[idx] | |
speaker_embedding = np.load(speaker_embeddings[key]) | |
# randomly shuffle the elements | |
np.random.shuffle(speaker_embedding) | |
# randomly flip half the values | |
x = (np.random.rand(512) >= 0.5) * 1.0 | |
x[x == 0] = -1.0 | |
speaker_embedding *= x | |
#speaker_embedding = np.random.rand(512).astype(np.float32) * 0.3 - 0.15 | |
else: | |
speaker_embedding = np.load(speaker_embeddings[speaker[:3]]) | |
speaker_embedding = torch.tensor(speaker_embedding).unsqueeze(0) | |
speech = model.generate_speech(input_ids, speaker_embedding, vocoder=vocoder) | |
speech = (speech.numpy() * 32767).astype(np.int16) | |
return (16000, speech) | |
title = "Text-to-Speech App using SpeechT5" | |
gr.Interface( | |
fn=predict, | |
inputs=[ | |
gr.Text(label="Input Text"), | |
gr.Radio(label="Speaker", choices=[ | |
"BDL (male)", | |
"CLB (female)", | |
"KSP (male)", | |
"RMS (male)", | |
"SLT (female)", | |
"Surprise Me!" | |
], | |
value="BDL (male)"), | |
], | |
outputs=[ | |
gr.Audio(label="Generated Speech", type="numpy"), | |
], | |
title=title, | |
).launch() | |