Spaces:
Running
Running
File size: 5,511 Bytes
049c446 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
import gradio as gr
import librosa
import numpy as np
import torch
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
model = SpeechT5ForTextToSpeech.from_pretrained("tejas1206/speecht5_tts_ta")
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
speaker_embeddings = {
"BDL": "speaker/cmu_us_bdl_arctic-wav-arctic_a0009.npy",
"CLB": "speaker/cmu_us_clb_arctic-wav-arctic_a0144.npy",
"KSP": "speaker/cmu_us_ksp_arctic-wav-arctic_b0087.npy",
"RMS": "speaker/cmu_us_rms_arctic-wav-arctic_b0353.npy",
"SLT": "speaker/cmu_us_slt_arctic-wav-arctic_a0508.npy",
}
def convert_text(sentence):
replacements = [
(' ', ' '), # Space
('&', 'and'), # Ampersand
('_', '_'), # Underscore
('`', '`'), # Backtick
('·', '.'), # Middle dot
('á', 'a'), # Accent on 'a'
('ô', 'o'), # Accent on 'o'
('š', 's'), # 'S' with caron (soft s sound)
('ஃ', 'akh'), # Aytham (Tamil diacritic)
('அ', 'a'), # Tamil letter A
('ஆ', 'aa'), # Tamil letter AA
('இ', 'i'), # Tamil letter I
('ஈ', 'ii'), # Tamil letter II
('உ', 'u'), # Tamil letter U
('ஊ', 'uu'), # Tamil letter UU
('எ', 'e'), # Tamil letter E
('ஏ', 'ee'), # Tamil letter EE
('ஐ', 'ai'), # Tamil letter AI
('ஒ', 'o'), # Tamil letter O
('ஓ', 'oo'), # Tamil letter OO
('ஔ', 'au'), # Tamil letter AU
('க', 'ka'), # Tamil letter KA
('ங', 'nga'), # Tamil letter NGA
('ச', 'cha'), # Tamil letter CHA
('ஜ', 'ja'), # Tamil letter JA
('ஞ', 'nya'), # Tamil letter NYA
('ட', 'ta'), # Tamil letter TTA (retroflex T)
('ண', 'na'), # Tamil letter NNA (retroflex N)
('த', 'tha'), # Tamil letter THA
('ந', 'na'), # Tamil letter NA
('ன', 'na'), # Tamil letter NN (alveolar N)
('ப', 'pa'), # Tamil letter PA
('ம', 'ma'), # Tamil letter MA
('ய', 'ya'), # Tamil letter YA
('ர', 'ra'), # Tamil letter RA
('ற', 'rra'), # Tamil letter RRA (retroflex R)
('ல', 'la'), # Tamil letter LA
('ள', 'lla'), # Tamil letter LLA (retroflex L)
('ழ', 'zha'), # Tamil letter LLA (unique Tamil letter)
('வ', 'va'), # Tamil letter VA
('ஷ', 'sha'), # Tamil letter SHA
('ஸ', 'sa'), # Tamil letter SA
('ஹ', 'ha'), # Tamil letter HA
('ா', 'aa'), # Long A (Tamil vowel extension)
('ி', 'i'), # Short I (Tamil vowel extension)
('ீ', 'ii'), # Long I (Tamil vowel extension)
('ு', 'u'), # Short U (Tamil vowel extension)
('ூ', 'uu'), # Long U (Tamil vowel extension)
('ெ', 'e'), # Short E (Tamil vowel extension)
('ே', 'ee'), # Long E (Tamil vowel extension)
('ை', 'ai'), # Tamil diphthong AI
('ொ', 'o'), # Short O (Tamil vowel extension)
('ோ', 'oo'), # Long O (Tamil vowel extension)
('ௌ', 'au'), # Tamil diphthong AU
('்', ''), # Tamil virama (removes inherent vowel)
('ௗ', 'au'), # Rare Tamil vowel diacritic
('ഥ', 'tha'), # Malayalam letter THA
('–', '-'), # En dash
('‘', "'"), # Left single quotation mark
('’', "'"), # Right single quotation mark
('‚', ','), # Single low quotation mark
('“', '"'), # Left double quotation mark
('”', '"'), # Right double quotation mark
('•', '.'), # Bullet point
('…', '...'), # Ellipsis
('′', "'"), # Prime (minutes or feet symbol)
('″', '"'), # Double prime (seconds or inches symbol)
('●', '.'), # Filled bullet
('◯', 'o'), # Circle symbol
]
for src, dst in replacements:
sentence = sentence.replace(src, dst)
return sentence
def predict(text, speaker):
if len(text.strip()) == 0:
return (16000, np.zeros(0).astype(np.int16))
text = convert_text(text)
inputs = processor(text=text, return_tensors="pt")
# limit input length
input_ids = inputs["input_ids"]
input_ids = input_ids[..., :model.config.max_text_positions]
if speaker == "Surprise Me!":
# load one of the provided speaker embeddings at random
idx = np.random.randint(len(speaker_embeddings))
key = list(speaker_embeddings.keys())[idx]
speaker_embedding = np.load(speaker_embeddings[key])
# randomly shuffle the elements
np.random.shuffle(speaker_embedding)
# randomly flip half the values
x = (np.random.rand(512) >= 0.5) * 1.0
x[x == 0] = -1.0
speaker_embedding *= x
#speaker_embedding = np.random.rand(512).astype(np.float32) * 0.3 - 0.15
else:
speaker_embedding = np.load(speaker_embeddings[speaker[:3]])
speaker_embedding = torch.tensor(speaker_embedding).unsqueeze(0)
speech = model.generate_speech(input_ids, speaker_embedding, vocoder=vocoder)
speech = (speech.numpy() * 32767).astype(np.int16)
return (16000, speech)
title = "Text-to-Speech App using SpeechT5"
gr.Interface(
fn=predict,
inputs=[
gr.Text(label="Input Text"),
gr.Radio(label="Speaker", choices=[
"BDL (male)",
"CLB (female)",
"KSP (male)",
"RMS (male)",
"SLT (female)",
"Surprise Me!"
],
value="BDL (male)"),
],
outputs=[
gr.Audio(label="Generated Speech", type="numpy"),
],
title=title,
).launch()
|