File size: 5,511 Bytes
049c446
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import gradio as gr
import librosa
import numpy as np
import torch

from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan


processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
model = SpeechT5ForTextToSpeech.from_pretrained("tejas1206/speecht5_tts_ta")
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")


speaker_embeddings = {
    "BDL": "speaker/cmu_us_bdl_arctic-wav-arctic_a0009.npy",
    "CLB": "speaker/cmu_us_clb_arctic-wav-arctic_a0144.npy",
    "KSP": "speaker/cmu_us_ksp_arctic-wav-arctic_b0087.npy",
    "RMS": "speaker/cmu_us_rms_arctic-wav-arctic_b0353.npy",
    "SLT": "speaker/cmu_us_slt_arctic-wav-arctic_a0508.npy",
}

def convert_text(sentence):

    replacements = [
    (' ', ' '),  # Space
    ('&', 'and'),  # Ampersand
    ('_', '_'),  # Underscore
    ('`', '`'),  # Backtick
    ('·', '.'),  # Middle dot
    ('á', 'a'),  # Accent on 'a'
    ('ô', 'o'),  # Accent on 'o'
    ('š', 's'),  # 'S' with caron (soft s sound)
    ('ஃ', 'akh'),  # Aytham (Tamil diacritic)
    ('அ', 'a'),  # Tamil letter A
    ('ஆ', 'aa'),  # Tamil letter AA
    ('இ', 'i'),  # Tamil letter I
    ('ஈ', 'ii'),  # Tamil letter II
    ('உ', 'u'),  # Tamil letter U
    ('ஊ', 'uu'),  # Tamil letter UU
    ('எ', 'e'),  # Tamil letter E
    ('ஏ', 'ee'),  # Tamil letter EE
    ('ஐ', 'ai'),  # Tamil letter AI
    ('ஒ', 'o'),  # Tamil letter O
    ('ஓ', 'oo'),  # Tamil letter OO
    ('ஔ', 'au'),  # Tamil letter AU
    ('க', 'ka'),  # Tamil letter KA
    ('ங', 'nga'),  # Tamil letter NGA
    ('ச', 'cha'),  # Tamil letter CHA
    ('ஜ', 'ja'),  # Tamil letter JA
    ('ஞ', 'nya'),  # Tamil letter NYA
    ('ட', 'ta'),  # Tamil letter TTA (retroflex T)
    ('ண', 'na'),  # Tamil letter NNA (retroflex N)
    ('த', 'tha'),  # Tamil letter THA
    ('ந', 'na'),  # Tamil letter NA
    ('ன', 'na'),  # Tamil letter NN (alveolar N)
    ('ப', 'pa'),  # Tamil letter PA
    ('ம', 'ma'),  # Tamil letter MA
    ('ய', 'ya'),  # Tamil letter YA
    ('ர', 'ra'),  # Tamil letter RA
    ('ற', 'rra'),  # Tamil letter RRA (retroflex R)
    ('ல', 'la'),  # Tamil letter LA
    ('ள', 'lla'),  # Tamil letter LLA (retroflex L)
    ('ழ', 'zha'),  # Tamil letter LLA (unique Tamil letter)
    ('வ', 'va'),  # Tamil letter VA
    ('ஷ', 'sha'),  # Tamil letter SHA
    ('ஸ', 'sa'),  # Tamil letter SA
    ('ஹ', 'ha'),  # Tamil letter HA
    ('ா', 'aa'),  # Long A (Tamil vowel extension)
    ('ி', 'i'),  # Short I (Tamil vowel extension)
    ('ீ', 'ii'),  # Long I (Tamil vowel extension)
    ('ு', 'u'),  # Short U (Tamil vowel extension)
    ('ூ', 'uu'),  # Long U (Tamil vowel extension)
    ('ெ', 'e'),  # Short E (Tamil vowel extension)
    ('ே', 'ee'),  # Long E (Tamil vowel extension)
    ('ை', 'ai'),  # Tamil diphthong AI
    ('ொ', 'o'),  # Short O (Tamil vowel extension)
    ('ோ', 'oo'),  # Long O (Tamil vowel extension)
    ('ௌ', 'au'),  # Tamil diphthong AU
    ('்', ''),  # Tamil virama (removes inherent vowel)
    ('ௗ', 'au'),  # Rare Tamil vowel diacritic
    ('ഥ', 'tha'),  # Malayalam letter THA
    ('–', '-'),  # En dash
    ('‘', "'"),  # Left single quotation mark
    ('’', "'"),  # Right single quotation mark
    ('‚', ','),  # Single low quotation mark
    ('“', '"'),  # Left double quotation mark
    ('”', '"'),  # Right double quotation mark
    ('•', '.'),  # Bullet point
    ('…', '...'),  # Ellipsis
    ('′', "'"),  # Prime (minutes or feet symbol)
    ('″', '"'),  # Double prime (seconds or inches symbol)
    ('●', '.'),  # Filled bullet
    ('◯', 'o'),  # Circle symbol
    ]

    for src, dst in replacements:
        sentence = sentence.replace(src, dst)
    return sentence


def predict(text, speaker):

    if len(text.strip()) == 0:
        return (16000, np.zeros(0).astype(np.int16))
    
    text = convert_text(text)

    inputs = processor(text=text, return_tensors="pt")

    # limit input length
    input_ids = inputs["input_ids"]
    input_ids = input_ids[..., :model.config.max_text_positions]

    if speaker == "Surprise Me!":
        # load one of the provided speaker embeddings at random
        idx = np.random.randint(len(speaker_embeddings))
        key = list(speaker_embeddings.keys())[idx]
        speaker_embedding = np.load(speaker_embeddings[key])

        # randomly shuffle the elements
        np.random.shuffle(speaker_embedding)

        # randomly flip half the values
        x = (np.random.rand(512) >= 0.5) * 1.0
        x[x == 0] = -1.0
        speaker_embedding *= x

        #speaker_embedding = np.random.rand(512).astype(np.float32) * 0.3 - 0.15
    else:
        speaker_embedding = np.load(speaker_embeddings[speaker[:3]])

    speaker_embedding = torch.tensor(speaker_embedding).unsqueeze(0)

    speech = model.generate_speech(input_ids, speaker_embedding, vocoder=vocoder)

    speech = (speech.numpy() * 32767).astype(np.int16)
    return (16000, speech)


title = "Text-to-Speech App using SpeechT5"

gr.Interface(
    fn=predict,
    inputs=[
        gr.Text(label="Input Text"),
        gr.Radio(label="Speaker", choices=[
            "BDL (male)",
            "CLB (female)",
            "KSP (male)",
            "RMS (male)",
            "SLT (female)",
            "Surprise Me!"
        ],
        value="BDL (male)"),
    ],
    outputs=[
        gr.Audio(label="Generated Speech", type="numpy"),
    ],
    title=title,
).launch()