Spaces:
Running
on
Zero
title: 혼원 비디오 폴리 사운드 생성 모델
emoji: 🎬
colorFrom: blue
colorTo: indigo
sdk: gradio
sdk_version: 5.44.1
app_file: app.py
pinned: false
models:
- tencent/HunyuanVideo-Foley
🎬 HunyuanVideo-Foley
Multimodal Diffusion with Representation Alignment for High-Fidelity Foley Audio Generation
Professional-grade AI sound effect generation for video content creators
👥 Authors
Sizhe Shan1,2* • Qiulin Li1,3* • Yutao Cui1 • Miles Yang1 • Yuehai Wang2 • Qun Yang3 • Jin Zhou1† • Zhao Zhong1
🏢 1Tencent Hunyuan • 🎓 2Zhejiang University • ✈️ 3Nanjing University of Aeronautics and Astronautics
*Equal contribution • †Project lead
✨ Key Highlights
🎭 Multi-scenario Sync |
🧠 Multi-modal Balance |
🎵 48kHz Hi-Fi Output |
📄 Abstract
🚀 Tencent Hunyuan proudly open-sources HunyuanVideo-Foley - an end-to-end video sound effect generation model!
A professional-grade AI tool specifically designed for video content creators, widely applicable to diverse scenarios including short video creation, film production, advertising creativity, and game development.
🎯 Core Highlights
🎬 Multi-scenario Audio-Visual Synchronization
Supports generating high-quality audio that is synchronized and semantically aligned with complex video scenes, enhancing realism and immersive experience for film/TV and gaming applications.
⚖️ Multi-modal Semantic Balance
Intelligently balances visual and textual information analysis, comprehensively orchestrates sound effect elements, avoids one-sided generation, and meets personalized dubbing requirements.
🎵 High-fidelity Audio Output
Self-developed 48kHz audio VAE perfectly reconstructs sound effects, music, and vocals, achieving professional-grade audio generation quality.
🏆 SOTA Performance Achieved
HunyuanVideo-Foley comprehensively leads the field across multiple evaluation benchmarks, achieving new state-of-the-art levels in audio fidelity, visual-semantic alignment, temporal alignment, and distribution matching - surpassing all open-source solutions!
📊 Performance comparison across different evaluation metrics - HunyuanVideo-Foley leads in all categories
🔧 Technical Architecture
📊 Data Pipeline Design
The TV2A (Text-Video-to-Audio) task presents a complex multimodal generation challenge requiring large-scale, high-quality datasets. Our comprehensive data pipeline systematically identifies and excludes unsuitable content to produce robust and generalizable audio generation capabilities.
🏗️ Model Architecture
HunyuanVideo-Foley employs a sophisticated hybrid architecture:
- 🔄 Multimodal Transformer Blocks: Process visual-audio streams simultaneously
- 🎵 Unimodal Transformer Blocks: Focus on audio stream refinement
- 👁️ Visual Encoding: Pre-trained encoder extracts visual features from video frames
- 📝 Text Processing: Semantic features extracted via pre-trained text encoder
- 🎧 Audio Encoding: Latent representations with Gaussian noise perturbation
- ⏰ Temporal Alignment: Synchformer-based frame-level synchronization with gated modulation
📈 Performance Benchmarks
🎬 MovieGen-Audio-Bench Results
Objective and Subjective evaluation results demonstrating superior performance across all metrics
🏆 Method | PQ ↑ | PC ↓ | CE ↑ | CU ↑ | IB ↑ | DeSync ↓ | CLAP ↑ | MOS-Q ↑ | MOS-S ↑ | MOS-T ↑ |
---|---|---|---|---|---|---|---|---|---|---|
FoleyGrafter | 6.27 | 2.72 | 3.34 | 5.68 | 0.17 | 1.29 | 0.14 | 3.36±0.78 | 3.54±0.88 | 3.46±0.95 |
V-AURA | 5.82 | 4.30 | 3.63 | 5.11 | 0.23 | 1.38 | 0.14 | 2.55±0.97 | 2.60±1.20 | 2.70±1.37 |
Frieren | 5.71 | 2.81 | 3.47 | 5.31 | 0.18 | 1.39 | 0.16 | 2.92±0.95 | 2.76±1.20 | 2.94±1.26 |
MMAudio | 6.17 | 2.84 | 3.59 | 5.62 | 0.27 | 0.80 | 0.35 | 3.58±0.84 | 3.63±1.00 | 3.47±1.03 |
ThinkSound | 6.04 | 3.73 | 3.81 | 5.59 | 0.18 | 0.91 | 0.20 | 3.20±0.97 | 3.01±1.04 | 3.02±1.08 |
🥇 HiFi-Foley (ours) | 🟢 6.59 | 🟢 2.74 | 🟢 3.88 | 🟢 6.13 | 🟢 0.35 | 🟢 0.74 | 🟢 0.33 | 🟢 4.14±0.68 | 🟢 4.12±0.77 | 🟢 4.15±0.75 |
🎯 Kling-Audio-Eval Results
Comprehensive objective evaluation showcasing state-of-the-art performance
🏆 Method | FD_PANNs ↓ | FD_PASST ↓ | KL ↓ | IS ↑ | PQ ↑ | PC ↓ | CE ↑ | CU ↑ | IB ↑ | DeSync ↓ | CLAP ↑ |
---|---|---|---|---|---|---|---|---|---|---|---|
FoleyGrafter | 22.30 | 322.63 | 2.47 | 7.08 | 6.05 | 2.91 | 3.28 | 5.44 | 0.22 | 1.23 | 0.22 |
V-AURA | 33.15 | 474.56 | 3.24 | 5.80 | 5.69 | 3.98 | 3.13 | 4.83 | 0.25 | 0.86 | 0.13 |
Frieren | 16.86 | 293.57 | 2.95 | 7.32 | 5.72 | 2.55 | 2.88 | 5.10 | 0.21 | 0.86 | 0.16 |
MMAudio | 9.01 | 205.85 | 2.17 | 9.59 | 5.94 | 2.91 | 3.30 | 5.39 | 0.30 | 0.56 | 0.27 |
ThinkSound | 9.92 | 228.68 | 2.39 | 6.86 | 5.78 | 3.23 | 3.12 | 5.11 | 0.22 | 0.67 | 0.22 |
🥇 HiFi-Foley (ours) | 🟢 6.07 | 🟢 202.12 | 🟢 1.89 | 🟢 8.30 | 🟢 6.12 | 🟢 2.76 | 🟢 3.22 | 🟢 5.53 | 🟢 0.38 | 🟢 0.54 | 🟢 0.24 |
🎉 Outstanding Results! HunyuanVideo-Foley achieves the best scores across ALL evaluation metrics, demonstrating significant improvements in audio quality, synchronization, and semantic alignment.
🚀 Quick Start
📦 Installation
🔧 System Requirements
- CUDA: 12.4 or 11.8 recommended
- Python: 3.8+
- OS: Linux (primary support)
Step 1: Clone Repository
# 📥 Clone the repository
git clone https://github.com/Tencent-Hunyuan/HunyuanVideo-Foley
cd HunyuanVideo-Foley
Step 2: Environment Setup
💡 Tip: We recommend using Conda for Python environment management.
# 🔧 Install dependencies
pip install -r requirements.txt
Step 3: Download Pretrained Models
🔗 Download Model weights from Huggingface
# using git-lfs
git clone https://huggingface.co/tencent/HunyuanVideo-Foley
# using huggingface-cli
huggingface-cli download tencent/HunyuanVideo-Foley
💻 Usage
🎬 Single Video Generation
Generate Foley audio for a single video file with text description:
python3 infer.py \
--model_path PRETRAINED_MODEL_PATH_DIR \
--config_path ./configs/hunyuanvideo-foley-xxl.yaml \
--single_video video_path \
--single_prompt "audio description" \
--output_dir OUTPUT_DIR
📂 Batch Processing
Process multiple videos using a CSV file with video paths and descriptions:
python3 infer.py \
--model_path PRETRAINED_MODEL_PATH_DIR \
--config_path ./configs/hunyuanvideo-foley-xxl.yaml \
--csv_path assets/test.csv \
--output_dir OUTPUT_DIR
🌐 Interactive Web Interface
Launch a user-friendly Gradio web interface for easy interaction:
export HIFI_FOLEY_MODEL_PATH=PRETRAINED_MODEL_PATH_DIR
python3 gradio_app.py
🚀 Then open your browser and navigate to the provided local URL to start generating Foley audio!
📚 Citation
If you find HunyuanVideo-Foley useful for your research, please consider citing our paper:
@misc{shan2025hunyuanvideofoleymultimodaldiffusionrepresentation,
title={HunyuanVideo-Foley: Multimodal Diffusion with Representation Alignment for High-Fidelity Foley Audio Generation},
author={Sizhe Shan and Qiulin Li and Yutao Cui and Miles Yang and Yuehai Wang and Qun Yang and Jin Zhou and Zhao Zhong},
year={2025},
eprint={2508.16930},
archivePrefix={arXiv},
primaryClass={eess.AS},
url={https://arxiv.org/abs/2508.16930},
}
🙏 Acknowledgements
We extend our heartfelt gratitude to the open-source community!
🎨 Stable Diffusion 3 |
⚡ FLUX |
🎵 MMAudio |
🤗 HuggingFace |
🗜️ DAC |
🔗 Synchformer |
🌟 Special thanks to all researchers and developers who contribute to the advancement of AI-generated audio and multimodal learning!