NSFW_Check / utils.py
tanlocc's picture
add base file for api
213de71
import numpy as np
import cv2
import subprocess
import math
from itertools import product as product
from numpy.typing import NDArray
from typing import List
import argparse
import pynvml
from dataclasses import dataclass
from skimage import transform
def parse_args():
@dataclass
class Argument:
image_path: str
weight_path: str
# parse argument
parser = argparse.ArgumentParser(
prog="Run AI Tasks",
description="call builded task belong to Face",
)
parser.add_argument(
"--image", type=str, default="samples/An_2000.jpg", help="path to tested image"
)
parser.add_argument(
"--weight", type=str, default="weights/retinaface_mobilev3.onnx", help="path to weight"
)
args = parser.parse_args()
return Argument(
image_path=args.image,
weight_path=args.weight
)
def get_memory_free_MiB(gpu_index):
pynvml.nvmlInit()
handle = pynvml.nvmlDeviceGetHandleByIndex(int(gpu_index))
mem_info = pynvml.nvmlDeviceGetMemoryInfo(handle)
return mem_info.free // 1024 ** 2
def count_gpus():
try:
output = subprocess.check_output(['nvidia-smi', '--query-gpu=count', '--format=csv,noheader'], encoding='utf-8')
num_gpus = int(output.strip().split('\n')[0])
except subprocess.CalledProcessError:
num_gpus = 0
return num_gpus
def prepare_input_wraper(inter=1, mean=None, std=None, channel_first=True, color_space="BGR", is_scale=False):
'''
THIS PROCESS WAY WILL OPTIMIZE RUNTIME (scaling will bit slower than no scaling)
==========================================================================
inter: resize type (0: Nearest, 1: Linear, 2: Cubic)
is_scale: whether we scale image in range(0,1) to normalize or not
NOTE: image normalize with scale DIFFERENT normalize no scale
mean: expected value of distribution
std: standard deviation of distribution
channel_first: True is (c,h,w), False is (h,w,c)
color_space: BGR (default of cv2), RGB
==========================================================================
'''
if mean is not None and std is not None:
mean = mean if isinstance(mean, list) or isinstance(mean, tuple) else [mean]*3
std = std if isinstance(std, list) or isinstance(std, tuple) else [std]*3
def call(img: NDArray, width: int, height: int):
'''
weight: input width of input model
height: input height of input model
'''
if img.shape[0] != height or img.shape[1] != width:
image = cv2.resize(img.copy(), (width, height), interpolation=inter)
else:
image = img.copy()
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) if color_space == "RGB" else image
image = image.transpose((2,0,1)) if channel_first else image
image = image.astype(np.float32)
# scale image in range(0,1)
if is_scale:
image /= 255
if mean is not None and std is not None:
if channel_first:
image[0, :, :] -= mean[0]; image[1, :, :] -= mean[1]; image[2, :, :] -= mean[2]
image[0, :, :] /= std[0] ; image[1, :, :] /= std[1] ; image[2, :, :] /= std[2]
else:
image[:, :, 0] -= mean[0]; image[:, :, 1] -= mean[1]; image[:, :, 2] -= mean[2]
image[:, :, 0] /= std[0] ; image[:, :, 1] /= std[1] ; image[:, :, 2] /= std[2]
return image[np.newaxis, :]
return call
# =============================External Process image
def class_letterbox(im, new_shape=(640, 640), color=(0, 0, 0), scaleup=True):
# Resize and pad image while meeting stride-multiple constraints
shape = im.shape[:2] # current shape [height, width]
if isinstance(new_shape, int):
new_shape = (new_shape, new_shape)
if im.shape[0] == new_shape[0] and im.shape[1] == new_shape[1]:
return im
# Scale ratio (new / old)
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
if not scaleup: # only scale down, do not scale up (for better val mAP)
r = min(r, 1.0)
# Compute padding
# ratio = r, r # width, height ratios
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
dw /= 2 # divide padding into 2 sides
dh /= 2
if shape[::-1] != new_unpad: # resize
im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
return im
def get_new_box(src_w: int, src_h: int, bbox: List[int], scale: float):
x, y, xmax, ymax = bbox
box_w = (xmax - x)
box_h = (ymax - y)
# Re-calculate scale ratio
scale = min((src_h-1)/box_h, min((src_w-1)/box_w, scale))
# get new width and height with scale ratio
new_width = box_w * scale
new_height = box_h * scale
center_x, center_y = box_w/2+x, box_h/2+y
# calculate bbox with new width and height
left_top_x = center_x-new_width/2
left_top_y = center_y-new_height/2
right_bottom_x = center_x+new_width/2
right_bottom_y = center_y+new_height/2
# bbox must be in image
if left_top_x < 0:
right_bottom_x -= left_top_x
left_top_x = 0
if left_top_y < 0:
right_bottom_y -= left_top_y
left_top_y = 0
if right_bottom_x > src_w-1:
left_top_x -= right_bottom_x-src_w+1
right_bottom_x = src_w-1
if right_bottom_y > src_h-1:
left_top_y -= right_bottom_y-src_h+1
right_bottom_y = src_h-1
return int(left_top_x), int(left_top_y),\
int(right_bottom_x), int(right_bottom_y)
def align_face(image: NDArray, bounding_box: List[int], landmark: List[int], use_bbox: int=True):
src = np.array(landmark).reshape(-1, 2)
if use_bbox:
# crop face
x1, y1, x2, y2 = bounding_box
image = image[y1:y2+1, x1:x2+1]
# align
src -= np.array([x1, y1])
des = np.array(
[
[38.2946, 51.6963],
[73.5318, 51.5014],
[56.0252, 71.7366],
[38.2946, 92.3655],
[70.7299, 92.2041],
]
)
trans = transform.SimilarityTransform()
trans.estimate(src, des)
return cv2.warpAffine(image, trans.params[:2, :], dsize=(112, 112))
# =============================DETECT
def get_largest_bbox(bboxes: NDArray) -> NDArray:
# compute bbox area
hbbox, wbbox = (
bboxes[:, 3] - bboxes[:, 1],
bboxes[:, 2] - bboxes[:, 0],
)
area = hbbox*wbbox
return np.argmax(area)
def get_input_size(image_height: int, image_width: int, limit_side_len: int) -> List[int]:
'''
image_size: [ImageHeight, ImageWidth]
'''
if max(image_height, image_width) >= limit_side_len:
ratio = (
float(limit_side_len) / image_height
if image_height < image_width
else float(limit_side_len) / image_width
)
else:
ratio = 1.
input_height = int((ratio*image_height // 32) * 32)
input_width = int((ratio*image_width // 32) * 32)
return input_height, input_width
def prior_box(width: int, height: int, steps: List[int], min_sizes: List[List[int]]) -> NDArray:
anchors = []
feature_maps = [
[math.ceil(height / step), math.ceil(width / step)] for step in steps
]
for k, f in enumerate(feature_maps):
for i, j in product(range(f[0]), range(f[1])):
for min_size in min_sizes[k]:
s_kx = min_size / width
s_ky = min_size / height
dense_cx = [x * steps[k] / width for x in [j + 0.5]]
dense_cy = [y * steps[k] / height for y in [i + 0.5]]
for cy, cx in product(dense_cy, dense_cx):
anchors += [cx, cy, s_kx, s_ky]
return np.reshape(anchors, (-1, 4))
def decode_boxes(bboxes: NDArray, priors: NDArray, variances: List[float], scale_factor: List[float]) -> NDArray:
bboxes = np.concatenate(
(
priors[:, :2] + bboxes[:, :2] * variances[0] * priors[:, 2:],
priors[:, 2:] * np.exp(bboxes[:, 2:] * variances[1]),
),
axis=1,
)
bboxes[:, :2] -= bboxes[:, 2:] / 2
bboxes[:, 2:] += bboxes[:, :2]
return bboxes * np.array(scale_factor * 2)
def decode_landmarks(landmarks: NDArray, priors: NDArray, variances: List[float], scale_factor: List[float]) -> NDArray:
landmarks = np.concatenate(
(
priors[:, :2] + landmarks[:, :2] * variances[0] * priors[:, 2:],
priors[:, :2] + landmarks[:, 2:4] * variances[0] * priors[:, 2:],
priors[:, :2] + landmarks[:, 4:6] * variances[0] * priors[:, 2:],
priors[:, :2] + landmarks[:, 6:8] * variances[0] * priors[:, 2:],
priors[:, :2] + landmarks[:, 8:10] * variances[0] * priors[:, 2:],
),
axis=1,
)
return landmarks * np.array(scale_factor * 5)
def intersection_over_union(bbox: NDArray, bboxes: NDArray, mode="Union") -> NDArray:
"""
Caculate IoU between detect and ground truth boxes
:param crop_box:numpy array (4, )
:param bboxes:numpy array (n, 4):x1, y1, x2, y2
:return:
numpy array, shape (n, ) Iou
"""
bbox_area = (bbox[2] - bbox[0] + 1) * (bbox[3] - bbox[1] + 1)
areas = (bboxes[:, 2] - bboxes[:, 0] + 1) * (bboxes[:, 3] - bboxes[:, 1] + 1)
xx1 = np.maximum(bbox[0], bboxes[:, 0])
yy1 = np.maximum(bbox[1], bboxes[:, 1])
xx2 = np.minimum(bbox[2], bboxes[:, 2])
yy2 = np.minimum(bbox[3], bboxes[:, 3])
# compute the width and height of the bounding box
w = np.maximum(0, xx2 - xx1 + 1)
h = np.maximum(0, yy2 - yy1 + 1)
inter = w * h
if mode == "Union":
over = inter / (bbox_area + areas - inter)
elif mode == "Minimum":
over = inter / np.minimum(bbox_area, areas)
return over
def non_max_suppression(bboxes: NDArray, scores: NDArray, thresh: float, keep_top_k:int=100, mode:str="Union") -> List[int]:
"""
Bước 1: Tính diện tích của từng bbox
Bước 2: Sort score của từng bbox theo thứ tự giảm dần và lấy vị trí index của chúng
Bước 3: Theo thứ tự giảm dần của score, ta lấy bbox này giao với các bbox còn lại,
sau đó loại bỏ bớt các vị trí mà phần giao của 2 bbox lớn hơn THRESHOLD
"""
# Sắp xếp độ tư tin giảm giần (lấy index)
order = scores.argsort()[::-1][:keep_top_k]
# Duyệt qua từng bbox với độ tự tin giảm dần để loại bỏ những bbox trùng nhau
keep = []
while order.size > 0:
i = order[0]
keep.append(i)
iou = intersection_over_union(bboxes[i], bboxes[order[1:]], mode=mode)
# keep (cập nhật lại order bằng những gì còn lại sau khi loại bỏ)
inds = np.where(iou <= thresh)[0] # [1,2,3,6,45,....]
order = order[inds + 1]
return keep