Spaces:
Runtime error
Runtime error
add base file for api
Browse files- __init__.py +10 -0
- base.py +73 -0
- utils.py +323 -0
__init__.py
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .localize_with_landmark import *
|
| 2 |
+
from .check_mask import *
|
| 3 |
+
from .check_liveness import *
|
| 4 |
+
from .estimate_headpose import *
|
| 5 |
+
from .extract_facevector import *
|
| 6 |
+
from .extract_agegender import *
|
| 7 |
+
from .extract_emotion import *
|
| 8 |
+
from .configs import TASK_CONFIG
|
| 9 |
+
|
| 10 |
+
|
base.py
ADDED
|
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import onnxruntime
|
| 2 |
+
import random
|
| 3 |
+
import numpy as np
|
| 4 |
+
from pathlib import Path
|
| 5 |
+
from numpy.typing import NDArray
|
| 6 |
+
from typing import Any, List
|
| 7 |
+
from .utils import count_gpus, get_memory_free_MiB
|
| 8 |
+
from abc import ABC, abstractclassmethod
|
| 9 |
+
|
| 10 |
+
__dir__ = Path(__file__).parent
|
| 11 |
+
|
| 12 |
+
class ONNXBaseTask(ABC):
|
| 13 |
+
num_gpus: int = count_gpus()
|
| 14 |
+
|
| 15 |
+
def __init__(self, weight: str) -> None:
|
| 16 |
+
self.session = self.initialize_session(weight)
|
| 17 |
+
self.input_metadata = self.session.get_inputs()[0]
|
| 18 |
+
self.prepare_input = self.setup_prepare_input()
|
| 19 |
+
|
| 20 |
+
# warmup model
|
| 21 |
+
input_height, input_width = self.input_metadata.shape[-2:]
|
| 22 |
+
temp = np.zeros((1, 3, int(input_height) if int(input_height) > 0 else 320, int(input_width) if int(input_width) > 0 else 320), dtype=np.float32)
|
| 23 |
+
self.run_session(temp)
|
| 24 |
+
|
| 25 |
+
@abstractclassmethod
|
| 26 |
+
def process_output(self, raw_outputs: List[NDArray], **kwargs) -> Any:
|
| 27 |
+
pass
|
| 28 |
+
|
| 29 |
+
@abstractclassmethod
|
| 30 |
+
def setup_prepare_input(self):
|
| 31 |
+
pass
|
| 32 |
+
|
| 33 |
+
def call(self, image) -> Any:
|
| 34 |
+
input_height, input_width = self.input_metadata.shape[-2:]
|
| 35 |
+
|
| 36 |
+
# predict
|
| 37 |
+
input_value = self.prepare_input(image, height=input_height, width=input_width)
|
| 38 |
+
raw_outputs = self.run_session(input_value)
|
| 39 |
+
|
| 40 |
+
return self.process_output(raw_outputs)
|
| 41 |
+
|
| 42 |
+
def run_session(self, input_value: NDArray) -> List[NDArray]:
|
| 43 |
+
input_dict = {self.input_metadata.name : input_value}
|
| 44 |
+
|
| 45 |
+
return self.session.run(None, input_dict)
|
| 46 |
+
|
| 47 |
+
def initialize_session(self, weight: str):
|
| 48 |
+
# get avaiable runtime
|
| 49 |
+
providers=[]
|
| 50 |
+
if self.num_gpus == 0:
|
| 51 |
+
providers += [("CPUExecutionProvider", {})]
|
| 52 |
+
else:
|
| 53 |
+
providers += [(
|
| 54 |
+
"CUDAExecutionProvider",
|
| 55 |
+
{
|
| 56 |
+
"device_id": random.choice([i for i in range(self.num_gpus) if get_memory_free_MiB(i) >= 1000])
|
| 57 |
+
}
|
| 58 |
+
)]
|
| 59 |
+
|
| 60 |
+
# init session
|
| 61 |
+
return onnxruntime.InferenceSession(
|
| 62 |
+
str(__dir__.parent.parent.parent/weight),
|
| 63 |
+
providers=providers
|
| 64 |
+
)
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
|
utils.py
ADDED
|
@@ -0,0 +1,323 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import cv2
|
| 3 |
+
import subprocess
|
| 4 |
+
import math
|
| 5 |
+
from itertools import product as product
|
| 6 |
+
from numpy.typing import NDArray
|
| 7 |
+
from typing import List
|
| 8 |
+
import argparse
|
| 9 |
+
import pynvml
|
| 10 |
+
from dataclasses import dataclass
|
| 11 |
+
from skimage import transform
|
| 12 |
+
|
| 13 |
+
def parse_args():
|
| 14 |
+
@dataclass
|
| 15 |
+
class Argument:
|
| 16 |
+
image_path: str
|
| 17 |
+
weight_path: str
|
| 18 |
+
|
| 19 |
+
# parse argument
|
| 20 |
+
parser = argparse.ArgumentParser(
|
| 21 |
+
prog="Run AI Tasks",
|
| 22 |
+
description="call builded task belong to Face",
|
| 23 |
+
)
|
| 24 |
+
parser.add_argument(
|
| 25 |
+
"--image", type=str, default="samples/An_2000.jpg", help="path to tested image"
|
| 26 |
+
)
|
| 27 |
+
parser.add_argument(
|
| 28 |
+
"--weight", type=str, default="weights/retinaface_mobilev3.onnx", help="path to weight"
|
| 29 |
+
)
|
| 30 |
+
|
| 31 |
+
args = parser.parse_args()
|
| 32 |
+
return Argument(
|
| 33 |
+
image_path=args.image,
|
| 34 |
+
weight_path=args.weight
|
| 35 |
+
)
|
| 36 |
+
|
| 37 |
+
def get_memory_free_MiB(gpu_index):
|
| 38 |
+
pynvml.nvmlInit()
|
| 39 |
+
handle = pynvml.nvmlDeviceGetHandleByIndex(int(gpu_index))
|
| 40 |
+
mem_info = pynvml.nvmlDeviceGetMemoryInfo(handle)
|
| 41 |
+
return mem_info.free // 1024 ** 2
|
| 42 |
+
|
| 43 |
+
def count_gpus():
|
| 44 |
+
try:
|
| 45 |
+
output = subprocess.check_output(['nvidia-smi', '--query-gpu=count', '--format=csv,noheader'], encoding='utf-8')
|
| 46 |
+
num_gpus = int(output.strip().split('\n')[0])
|
| 47 |
+
except subprocess.CalledProcessError:
|
| 48 |
+
num_gpus = 0
|
| 49 |
+
|
| 50 |
+
return num_gpus
|
| 51 |
+
|
| 52 |
+
def prepare_input_wraper(inter=1, mean=None, std=None, channel_first=True, color_space="BGR", is_scale=False):
|
| 53 |
+
'''
|
| 54 |
+
THIS PROCESS WAY WILL OPTIMIZE RUNTIME (scaling will bit slower than no scaling)
|
| 55 |
+
==========================================================================
|
| 56 |
+
inter: resize type (0: Nearest, 1: Linear, 2: Cubic)
|
| 57 |
+
|
| 58 |
+
is_scale: whether we scale image in range(0,1) to normalize or not
|
| 59 |
+
NOTE: image normalize with scale DIFFERENT normalize no scale
|
| 60 |
+
mean: expected value of distribution
|
| 61 |
+
std: standard deviation of distribution
|
| 62 |
+
|
| 63 |
+
channel_first: True is (c,h,w), False is (h,w,c)
|
| 64 |
+
color_space: BGR (default of cv2), RGB
|
| 65 |
+
==========================================================================
|
| 66 |
+
|
| 67 |
+
'''
|
| 68 |
+
if mean is not None and std is not None:
|
| 69 |
+
mean = mean if isinstance(mean, list) or isinstance(mean, tuple) else [mean]*3
|
| 70 |
+
std = std if isinstance(std, list) or isinstance(std, tuple) else [std]*3
|
| 71 |
+
|
| 72 |
+
def call(img: NDArray, width: int, height: int):
|
| 73 |
+
'''
|
| 74 |
+
weight: input width of input model
|
| 75 |
+
height: input height of input model
|
| 76 |
+
'''
|
| 77 |
+
|
| 78 |
+
if img.shape[0] != height or img.shape[1] != width:
|
| 79 |
+
image = cv2.resize(img.copy(), (width, height), interpolation=inter)
|
| 80 |
+
else:
|
| 81 |
+
image = img.copy()
|
| 82 |
+
|
| 83 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) if color_space == "RGB" else image
|
| 84 |
+
image = image.transpose((2,0,1)) if channel_first else image
|
| 85 |
+
image = image.astype(np.float32)
|
| 86 |
+
|
| 87 |
+
# scale image in range(0,1)
|
| 88 |
+
if is_scale:
|
| 89 |
+
image /= 255
|
| 90 |
+
|
| 91 |
+
if mean is not None and std is not None:
|
| 92 |
+
if channel_first:
|
| 93 |
+
image[0, :, :] -= mean[0]; image[1, :, :] -= mean[1]; image[2, :, :] -= mean[2]
|
| 94 |
+
image[0, :, :] /= std[0] ; image[1, :, :] /= std[1] ; image[2, :, :] /= std[2]
|
| 95 |
+
else:
|
| 96 |
+
image[:, :, 0] -= mean[0]; image[:, :, 1] -= mean[1]; image[:, :, 2] -= mean[2]
|
| 97 |
+
image[:, :, 0] /= std[0] ; image[:, :, 1] /= std[1] ; image[:, :, 2] /= std[2]
|
| 98 |
+
|
| 99 |
+
return image[np.newaxis, :]
|
| 100 |
+
|
| 101 |
+
return call
|
| 102 |
+
|
| 103 |
+
# =============================External Process image
|
| 104 |
+
def class_letterbox(im, new_shape=(640, 640), color=(0, 0, 0), scaleup=True):
|
| 105 |
+
# Resize and pad image while meeting stride-multiple constraints
|
| 106 |
+
shape = im.shape[:2] # current shape [height, width]
|
| 107 |
+
if isinstance(new_shape, int):
|
| 108 |
+
new_shape = (new_shape, new_shape)
|
| 109 |
+
|
| 110 |
+
if im.shape[0] == new_shape[0] and im.shape[1] == new_shape[1]:
|
| 111 |
+
return im
|
| 112 |
+
|
| 113 |
+
# Scale ratio (new / old)
|
| 114 |
+
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
|
| 115 |
+
if not scaleup: # only scale down, do not scale up (for better val mAP)
|
| 116 |
+
r = min(r, 1.0)
|
| 117 |
+
|
| 118 |
+
# Compute padding
|
| 119 |
+
# ratio = r, r # width, height ratios
|
| 120 |
+
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
|
| 121 |
+
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
|
| 122 |
+
|
| 123 |
+
dw /= 2 # divide padding into 2 sides
|
| 124 |
+
dh /= 2
|
| 125 |
+
|
| 126 |
+
if shape[::-1] != new_unpad: # resize
|
| 127 |
+
im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
|
| 128 |
+
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
|
| 129 |
+
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
|
| 130 |
+
im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
|
| 131 |
+
return im
|
| 132 |
+
|
| 133 |
+
def get_new_box(src_w: int, src_h: int, bbox: List[int], scale: float):
|
| 134 |
+
x, y, xmax, ymax = bbox
|
| 135 |
+
box_w = (xmax - x)
|
| 136 |
+
box_h = (ymax - y)
|
| 137 |
+
|
| 138 |
+
# Re-calculate scale ratio
|
| 139 |
+
scale = min((src_h-1)/box_h, min((src_w-1)/box_w, scale))
|
| 140 |
+
|
| 141 |
+
# get new width and height with scale ratio
|
| 142 |
+
new_width = box_w * scale
|
| 143 |
+
new_height = box_h * scale
|
| 144 |
+
center_x, center_y = box_w/2+x, box_h/2+y
|
| 145 |
+
|
| 146 |
+
# calculate bbox with new width and height
|
| 147 |
+
left_top_x = center_x-new_width/2
|
| 148 |
+
left_top_y = center_y-new_height/2
|
| 149 |
+
right_bottom_x = center_x+new_width/2
|
| 150 |
+
right_bottom_y = center_y+new_height/2
|
| 151 |
+
|
| 152 |
+
# bbox must be in image
|
| 153 |
+
if left_top_x < 0:
|
| 154 |
+
right_bottom_x -= left_top_x
|
| 155 |
+
left_top_x = 0
|
| 156 |
+
|
| 157 |
+
if left_top_y < 0:
|
| 158 |
+
right_bottom_y -= left_top_y
|
| 159 |
+
left_top_y = 0
|
| 160 |
+
|
| 161 |
+
if right_bottom_x > src_w-1:
|
| 162 |
+
left_top_x -= right_bottom_x-src_w+1
|
| 163 |
+
right_bottom_x = src_w-1
|
| 164 |
+
|
| 165 |
+
if right_bottom_y > src_h-1:
|
| 166 |
+
left_top_y -= right_bottom_y-src_h+1
|
| 167 |
+
right_bottom_y = src_h-1
|
| 168 |
+
|
| 169 |
+
return int(left_top_x), int(left_top_y),\
|
| 170 |
+
int(right_bottom_x), int(right_bottom_y)
|
| 171 |
+
|
| 172 |
+
def align_face(image: NDArray, bounding_box: List[int], landmark: List[int], use_bbox: int=True):
|
| 173 |
+
src = np.array(landmark).reshape(-1, 2)
|
| 174 |
+
if use_bbox:
|
| 175 |
+
# crop face
|
| 176 |
+
x1, y1, x2, y2 = bounding_box
|
| 177 |
+
image = image[y1:y2+1, x1:x2+1]
|
| 178 |
+
|
| 179 |
+
# align
|
| 180 |
+
src -= np.array([x1, y1])
|
| 181 |
+
|
| 182 |
+
des = np.array(
|
| 183 |
+
[
|
| 184 |
+
[38.2946, 51.6963],
|
| 185 |
+
[73.5318, 51.5014],
|
| 186 |
+
[56.0252, 71.7366],
|
| 187 |
+
[38.2946, 92.3655],
|
| 188 |
+
[70.7299, 92.2041],
|
| 189 |
+
]
|
| 190 |
+
)
|
| 191 |
+
|
| 192 |
+
trans = transform.SimilarityTransform()
|
| 193 |
+
trans.estimate(src, des)
|
| 194 |
+
|
| 195 |
+
return cv2.warpAffine(image, trans.params[:2, :], dsize=(112, 112))
|
| 196 |
+
|
| 197 |
+
# =============================DETECT
|
| 198 |
+
def get_largest_bbox(bboxes: NDArray) -> NDArray:
|
| 199 |
+
# compute bbox area
|
| 200 |
+
hbbox, wbbox = (
|
| 201 |
+
bboxes[:, 3] - bboxes[:, 1],
|
| 202 |
+
bboxes[:, 2] - bboxes[:, 0],
|
| 203 |
+
)
|
| 204 |
+
area = hbbox*wbbox
|
| 205 |
+
|
| 206 |
+
return np.argmax(area)
|
| 207 |
+
|
| 208 |
+
def get_input_size(image_height: int, image_width: int, limit_side_len: int) -> List[int]:
|
| 209 |
+
'''
|
| 210 |
+
image_size: [ImageHeight, ImageWidth]
|
| 211 |
+
'''
|
| 212 |
+
if max(image_height, image_width) >= limit_side_len:
|
| 213 |
+
ratio = (
|
| 214 |
+
float(limit_side_len) / image_height
|
| 215 |
+
if image_height < image_width
|
| 216 |
+
else float(limit_side_len) / image_width
|
| 217 |
+
)
|
| 218 |
+
else:
|
| 219 |
+
ratio = 1.
|
| 220 |
+
|
| 221 |
+
input_height = int((ratio*image_height // 32) * 32)
|
| 222 |
+
input_width = int((ratio*image_width // 32) * 32)
|
| 223 |
+
|
| 224 |
+
return input_height, input_width
|
| 225 |
+
|
| 226 |
+
def prior_box(width: int, height: int, steps: List[int], min_sizes: List[List[int]]) -> NDArray:
|
| 227 |
+
anchors = []
|
| 228 |
+
|
| 229 |
+
feature_maps = [
|
| 230 |
+
[math.ceil(height / step), math.ceil(width / step)] for step in steps
|
| 231 |
+
]
|
| 232 |
+
for k, f in enumerate(feature_maps):
|
| 233 |
+
for i, j in product(range(f[0]), range(f[1])):
|
| 234 |
+
for min_size in min_sizes[k]:
|
| 235 |
+
s_kx = min_size / width
|
| 236 |
+
s_ky = min_size / height
|
| 237 |
+
dense_cx = [x * steps[k] / width for x in [j + 0.5]]
|
| 238 |
+
dense_cy = [y * steps[k] / height for y in [i + 0.5]]
|
| 239 |
+
for cy, cx in product(dense_cy, dense_cx):
|
| 240 |
+
anchors += [cx, cy, s_kx, s_ky]
|
| 241 |
+
|
| 242 |
+
return np.reshape(anchors, (-1, 4))
|
| 243 |
+
|
| 244 |
+
def decode_boxes(bboxes: NDArray, priors: NDArray, variances: List[float], scale_factor: List[float]) -> NDArray:
|
| 245 |
+
bboxes = np.concatenate(
|
| 246 |
+
(
|
| 247 |
+
priors[:, :2] + bboxes[:, :2] * variances[0] * priors[:, 2:],
|
| 248 |
+
priors[:, 2:] * np.exp(bboxes[:, 2:] * variances[1]),
|
| 249 |
+
),
|
| 250 |
+
axis=1,
|
| 251 |
+
)
|
| 252 |
+
|
| 253 |
+
bboxes[:, :2] -= bboxes[:, 2:] / 2
|
| 254 |
+
bboxes[:, 2:] += bboxes[:, :2]
|
| 255 |
+
|
| 256 |
+
return bboxes * np.array(scale_factor * 2)
|
| 257 |
+
|
| 258 |
+
def decode_landmarks(landmarks: NDArray, priors: NDArray, variances: List[float], scale_factor: List[float]) -> NDArray:
|
| 259 |
+
landmarks = np.concatenate(
|
| 260 |
+
(
|
| 261 |
+
priors[:, :2] + landmarks[:, :2] * variances[0] * priors[:, 2:],
|
| 262 |
+
priors[:, :2] + landmarks[:, 2:4] * variances[0] * priors[:, 2:],
|
| 263 |
+
priors[:, :2] + landmarks[:, 4:6] * variances[0] * priors[:, 2:],
|
| 264 |
+
priors[:, :2] + landmarks[:, 6:8] * variances[0] * priors[:, 2:],
|
| 265 |
+
priors[:, :2] + landmarks[:, 8:10] * variances[0] * priors[:, 2:],
|
| 266 |
+
),
|
| 267 |
+
axis=1,
|
| 268 |
+
)
|
| 269 |
+
|
| 270 |
+
return landmarks * np.array(scale_factor * 5)
|
| 271 |
+
|
| 272 |
+
def intersection_over_union(bbox: NDArray, bboxes: NDArray, mode="Union") -> NDArray:
|
| 273 |
+
"""
|
| 274 |
+
Caculate IoU between detect and ground truth boxes
|
| 275 |
+
:param crop_box:numpy array (4, )
|
| 276 |
+
:param bboxes:numpy array (n, 4):x1, y1, x2, y2
|
| 277 |
+
:return:
|
| 278 |
+
numpy array, shape (n, ) Iou
|
| 279 |
+
"""
|
| 280 |
+
bbox_area = (bbox[2] - bbox[0] + 1) * (bbox[3] - bbox[1] + 1)
|
| 281 |
+
areas = (bboxes[:, 2] - bboxes[:, 0] + 1) * (bboxes[:, 3] - bboxes[:, 1] + 1)
|
| 282 |
+
|
| 283 |
+
xx1 = np.maximum(bbox[0], bboxes[:, 0])
|
| 284 |
+
yy1 = np.maximum(bbox[1], bboxes[:, 1])
|
| 285 |
+
xx2 = np.minimum(bbox[2], bboxes[:, 2])
|
| 286 |
+
yy2 = np.minimum(bbox[3], bboxes[:, 3])
|
| 287 |
+
|
| 288 |
+
# compute the width and height of the bounding box
|
| 289 |
+
w = np.maximum(0, xx2 - xx1 + 1)
|
| 290 |
+
h = np.maximum(0, yy2 - yy1 + 1)
|
| 291 |
+
|
| 292 |
+
inter = w * h
|
| 293 |
+
if mode == "Union":
|
| 294 |
+
over = inter / (bbox_area + areas - inter)
|
| 295 |
+
|
| 296 |
+
elif mode == "Minimum":
|
| 297 |
+
over = inter / np.minimum(bbox_area, areas)
|
| 298 |
+
|
| 299 |
+
return over
|
| 300 |
+
|
| 301 |
+
def non_max_suppression(bboxes: NDArray, scores: NDArray, thresh: float, keep_top_k:int=100, mode:str="Union") -> List[int]:
|
| 302 |
+
"""
|
| 303 |
+
Bước 1: Tính diện tích của từng bbox
|
| 304 |
+
Bước 2: Sort score của từng bbox theo thứ tự giảm dần và lấy vị trí index của chúng
|
| 305 |
+
Bước 3: Theo thứ tự giảm dần của score, ta lấy bbox này giao với các bbox còn lại,
|
| 306 |
+
sau đó loại bỏ bớt các vị trí mà phần giao của 2 bbox lớn hơn THRESHOLD
|
| 307 |
+
"""
|
| 308 |
+
# Sắp xếp độ tư tin giảm giần (lấy index)
|
| 309 |
+
order = scores.argsort()[::-1][:keep_top_k]
|
| 310 |
+
|
| 311 |
+
# Duyệt qua từng bbox với độ tự tin giảm dần để loại bỏ những bbox trùng nhau
|
| 312 |
+
keep = []
|
| 313 |
+
while order.size > 0:
|
| 314 |
+
i = order[0]
|
| 315 |
+
keep.append(i)
|
| 316 |
+
|
| 317 |
+
iou = intersection_over_union(bboxes[i], bboxes[order[1:]], mode=mode)
|
| 318 |
+
|
| 319 |
+
# keep (cập nhật lại order bằng những gì còn lại sau khi loại bỏ)
|
| 320 |
+
inds = np.where(iou <= thresh)[0] # [1,2,3,6,45,....]
|
| 321 |
+
order = order[inds + 1]
|
| 322 |
+
|
| 323 |
+
return keep
|