Spaces:
Paused
Paused
File size: 7,953 Bytes
7c2ec76 db8e834 6c8fb3a db8e834 6d7ed94 7c2ec76 6d7ed94 3c4359a 6d7ed94 6c8fb3a 6d7ed94 6c8fb3a 7c2ec76 6c8fb3a 7c2ec76 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
import gradio as gr
from huggingface_hub import InferenceClient
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
#import sqlite3
import json
from db_setup import setup_database
#setup database
setup_database()
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
modelpath = "Salesforce/xLAM-1b-fc-r"
model = AutoModelForCausalLM.from_pretrained(modelpath, torch_dtype="auto", trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(modelpath)
#=============prompt template and task instructions==============
# Please use our provided instruction prompt for best performance
task_instruction = """
You are an expert in composing functions. You are given a question and a set of possible functions.
Based on the question, you will need to make one or more function/tool calls to achieve the purpose.
If none of the functions can be used, point it out and refuse to answer.
If the given question lacks the parameters required by the function, also point it out.
""".strip()
format_instruction = """
The output MUST strictly adhere to the following JSON format, and NO other text MUST be included.
The example format is as follows. Please make sure the parameter type is correct. If no function call is needed, please make tool_calls an empty list '[]'.
```
{
"tool_calls": [
{"name": "func_name1", "arguments": {"argument1": "value1", "argument2": "value2"}},
... (more tool calls as required)
]
}
```
""".strip()##==output format
#=============APIs and Functions Metadata========================
get_weather_api = {
"name": "get_weather",
"description": "Get the current weather for a location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, New York"
},
"unit": {
"type": "string",
"enum": ["celsius", "fahrenheit"],
"description": "The unit of temperature to return"
}
},
"required": ["location"]
}
}
search_api = {
"name": "search",
"description": "Search for information on the internet",
"parameters": {
"type": "object",
"properties": {
"query": {
"type": "string",
"description": "The search query, e.g. 'latest news on AI'"
}
},
"required": ["query"]
}
}
search_loanapplication = {
"name": "searchLA",
"description": "Search for Loan Application status",
"parameters": {
"type": "object",
"properties": {
"loan_application_id": {
"type": "alphanumeric string",
"description": "The unique identifier for a loan application, eg: LA1234"
},
"phone_number": {
"type": "string",
"description": "The phone number associated with the loan application"
}
},
"required": ["loan_application_id", "phone_number"]
}
}
openai_format_tools = [search_api, search_loanapplication, get_weather_api]
# Helper function to convert openai format tools to our more concise xLAM format
def convert_to_xlam_tool(tools):
''''''
if isinstance(tools, dict):
return {
"name": tools["name"],
"description": tools["description"],
"parameters": {k: v for k, v in tools["parameters"].get("properties", {}).items()}
}
elif isinstance(tools, list):
return [convert_to_xlam_tool(tool) for tool in tools]
else:
return tools
#=========prompt builder====================================
# Helper function to build the input prompt for our model
def build_prompt(task_instruction: str, format_instruction: str, xlam_format_tools: list, query: str):
prompt = f"[BEGIN OF TASK INSTRUCTION]\n{task_instruction}\n[END OF TASK INSTRUCTION]\n\n"
prompt += f"[BEGIN OF AVAILABLE TOOLS]\n{json.dumps(xlam_format_tools)}\n[END OF AVAILABLE TOOLS]\n\n"
prompt += f"[BEGIN OF FORMAT INSTRUCTION]\n{format_instruction}\n[END OF FORMAT INSTRUCTION]\n\n"
prompt += f"[BEGIN OF QUERY]\n{query}\n[END OF QUERY]\n\n"
return prompt
def to_model(query):
xlam_format_tools = convert_to_xlam_tool(openai_format_tools)
content = build_prompt(task_instruction, format_instruction, xlam_format_tools, query)
#print(f"content: {content}")
messages=[
{ 'role': 'user', 'content': content}
]
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device)
# tokenizer.eos_token_id is the id of <|EOT|> token
outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id)
return (tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True))
def to_app(callobj):
callobject = json.loads(callobj)
callfunctions = []
callarguments = []
for tool_call in callobject['tool_calls']:
callfunctions.append(tool_call['name'])
callarguments.append(list(tool_call['arguments'].values()))
#print(f"fuctions: {callfunctions}")
#print(f"arguments: {callarguments}")
return callfunctions, callarguments
#===========sample application===================================
def application(callfunctions, callarguments):
##los application functions
def get_weather(location):
return (print(f"weather function executed with city {location}"))
def searchLA(laid, phnumber):
query = f"""SELECT * from sfdc_la where LAid = '{laid}'"""
cursor.execute(query)
result = cursor.fetchall()
return (print(result))
losfunctions_list = ['get_weather','searchLA']
for i, functionname in enumerate(callfunctions):
if functionname in losfunctions_list:
function = globals().get(functionname) or locals().get(functionname)
if function:
arguments = callarguments[i]
out = function(*arguments)
return out
#out = application(callfunctions, callarguments)
def process_input(input_str):
if not input_str:
return "No input provided!"
model_out = to_model(input_str)
funs, args = to_app(model_out)
output_obj = application(funs, args)
return output_obj
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = process_input(message)
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield response
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
demo.launch()
|