Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
4 |
#import sqlite3
|
5 |
import json
|
6 |
from db_setup import setup_database
|
@@ -16,7 +17,152 @@ modelpath = "Salesforce/xLAM-1b-fc-r"
|
|
16 |
model = AutoModelForCausalLM.from_pretrained(modelpath, torch_dtype="auto", trust_remote_code=True)
|
17 |
tokenizer = AutoTokenizer.from_pretrained(modelpath)
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
def respond(
|
22 |
message,
|
@@ -36,7 +182,7 @@ def respond(
|
|
36 |
|
37 |
messages.append({"role": "user", "content": message})
|
38 |
|
39 |
-
response =
|
40 |
|
41 |
for message in client.chat_completion(
|
42 |
messages,
|
@@ -57,7 +203,6 @@ For information on how to customize the ChatInterface, peruse the gradio docs: h
|
|
57 |
demo = gr.ChatInterface(
|
58 |
respond,
|
59 |
additional_inputs=[
|
60 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
61 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
62 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
63 |
gr.Slider(
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
+
import torch
|
5 |
#import sqlite3
|
6 |
import json
|
7 |
from db_setup import setup_database
|
|
|
17 |
model = AutoModelForCausalLM.from_pretrained(modelpath, torch_dtype="auto", trust_remote_code=True)
|
18 |
tokenizer = AutoTokenizer.from_pretrained(modelpath)
|
19 |
|
20 |
+
#=============prompt template and task instructions==============
|
21 |
+
# Please use our provided instruction prompt for best performance
|
22 |
+
task_instruction = """
|
23 |
+
You are an expert in composing functions. You are given a question and a set of possible functions.
|
24 |
+
Based on the question, you will need to make one or more function/tool calls to achieve the purpose.
|
25 |
+
If none of the functions can be used, point it out and refuse to answer.
|
26 |
+
If the given question lacks the parameters required by the function, also point it out.
|
27 |
+
""".strip()
|
28 |
+
format_instruction = """
|
29 |
+
The output MUST strictly adhere to the following JSON format, and NO other text MUST be included.
|
30 |
+
The example format is as follows. Please make sure the parameter type is correct. If no function call is needed, please make tool_calls an empty list '[]'.
|
31 |
+
```
|
32 |
+
{
|
33 |
+
"tool_calls": [
|
34 |
+
{"name": "func_name1", "arguments": {"argument1": "value1", "argument2": "value2"}},
|
35 |
+
... (more tool calls as required)
|
36 |
+
]
|
37 |
+
}
|
38 |
+
```
|
39 |
+
""".strip()##==output format
|
40 |
+
#=============APIs and Functions Metadata========================
|
41 |
+
get_weather_api = {
|
42 |
+
"name": "get_weather",
|
43 |
+
"description": "Get the current weather for a location",
|
44 |
+
"parameters": {
|
45 |
+
"type": "object",
|
46 |
+
"properties": {
|
47 |
+
"location": {
|
48 |
+
"type": "string",
|
49 |
+
"description": "The city and state, e.g. San Francisco, New York"
|
50 |
+
},
|
51 |
+
"unit": {
|
52 |
+
"type": "string",
|
53 |
+
"enum": ["celsius", "fahrenheit"],
|
54 |
+
"description": "The unit of temperature to return"
|
55 |
+
}
|
56 |
+
},
|
57 |
+
"required": ["location"]
|
58 |
+
}
|
59 |
+
}
|
60 |
|
61 |
+
search_api = {
|
62 |
+
"name": "search",
|
63 |
+
"description": "Search for information on the internet",
|
64 |
+
"parameters": {
|
65 |
+
"type": "object",
|
66 |
+
"properties": {
|
67 |
+
"query": {
|
68 |
+
"type": "string",
|
69 |
+
"description": "The search query, e.g. 'latest news on AI'"
|
70 |
+
}
|
71 |
+
},
|
72 |
+
"required": ["query"]
|
73 |
+
}
|
74 |
+
}
|
75 |
+
|
76 |
+
search_loanapplication = {
|
77 |
+
"name": "searchLA",
|
78 |
+
"description": "Search for Loan Application status",
|
79 |
+
"parameters": {
|
80 |
+
"type": "object",
|
81 |
+
"properties": {
|
82 |
+
"loan_application_id": {
|
83 |
+
"type": "alphanumeric string",
|
84 |
+
"description": "The unique identifier for a loan application, eg: LA1234"
|
85 |
+
},
|
86 |
+
"phone_number": {
|
87 |
+
"type": "string",
|
88 |
+
"description": "The phone number associated with the loan application"
|
89 |
+
}
|
90 |
+
},
|
91 |
+
"required": ["loan_application_id", "phone_number"]
|
92 |
+
}
|
93 |
+
}
|
94 |
+
|
95 |
+
openai_format_tools = [search_api, search_loanapplication, get_weather_api]
|
96 |
+
# Helper function to convert openai format tools to our more concise xLAM format
|
97 |
+
def convert_to_xlam_tool(tools):
|
98 |
+
''''''
|
99 |
+
if isinstance(tools, dict):
|
100 |
+
return {
|
101 |
+
"name": tools["name"],
|
102 |
+
"description": tools["description"],
|
103 |
+
"parameters": {k: v for k, v in tools["parameters"].get("properties", {}).items()}
|
104 |
+
}
|
105 |
+
elif isinstance(tools, list):
|
106 |
+
return [convert_to_xlam_tool(tool) for tool in tools]
|
107 |
+
else:
|
108 |
+
return tools
|
109 |
+
#=========prompt builder====================================
|
110 |
+
# Helper function to build the input prompt for our model
|
111 |
+
def build_prompt(task_instruction: str, format_instruction: str, xlam_format_tools: list, query: str):
|
112 |
+
prompt = f"[BEGIN OF TASK INSTRUCTION]\n{task_instruction}\n[END OF TASK INSTRUCTION]\n\n"
|
113 |
+
prompt += f"[BEGIN OF AVAILABLE TOOLS]\n{json.dumps(xlam_format_tools)}\n[END OF AVAILABLE TOOLS]\n\n"
|
114 |
+
prompt += f"[BEGIN OF FORMAT INSTRUCTION]\n{format_instruction}\n[END OF FORMAT INSTRUCTION]\n\n"
|
115 |
+
prompt += f"[BEGIN OF QUERY]\n{query}\n[END OF QUERY]\n\n"
|
116 |
+
return prompt
|
117 |
+
|
118 |
+
def to_model(query):
|
119 |
+
xlam_format_tools = convert_to_xlam_tool(openai_format_tools)
|
120 |
+
content = build_prompt(task_instruction, format_instruction, xlam_format_tools, query)
|
121 |
+
#print(f"content: {content}")
|
122 |
+
messages=[
|
123 |
+
{ 'role': 'user', 'content': content}
|
124 |
+
]
|
125 |
+
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device)
|
126 |
+
# tokenizer.eos_token_id is the id of <|EOT|> token
|
127 |
+
outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id)
|
128 |
+
return (tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True))
|
129 |
+
|
130 |
+
def to_app(callobj):
|
131 |
+
callobject = json.loads(callobj)
|
132 |
+
callfunctions = []
|
133 |
+
callarguments = []
|
134 |
+
for tool_call in callobject['tool_calls']:
|
135 |
+
callfunctions.append(tool_call['name'])
|
136 |
+
callarguments.append(list(tool_call['arguments'].values()))
|
137 |
+
#print(f"fuctions: {callfunctions}")
|
138 |
+
#print(f"arguments: {callarguments}")
|
139 |
+
return callfunctions, callarguments
|
140 |
+
#===========sample application===================================
|
141 |
+
def application(callfunctions, callarguments):
|
142 |
+
##los application functions
|
143 |
+
def get_weather(location):
|
144 |
+
return (print(f"weather function executed with city {location}"))
|
145 |
+
def searchLA(laid, phnumber):
|
146 |
+
query = f"""SELECT * from sfdc_la where LAid = '{laid}'"""
|
147 |
+
cursor.execute(query)
|
148 |
+
result = cursor.fetchall()
|
149 |
+
return (print(result))
|
150 |
+
losfunctions_list = ['get_weather','searchLA']
|
151 |
+
for i, functionname in enumerate(callfunctions):
|
152 |
+
if functionname in losfunctions_list:
|
153 |
+
function = globals().get(functionname) or locals().get(functionname)
|
154 |
+
if function:
|
155 |
+
arguments = callarguments[i]
|
156 |
+
out = function(*arguments)
|
157 |
+
return out
|
158 |
+
#out = application(callfunctions, callarguments)
|
159 |
+
def process_input(input_str):
|
160 |
+
if not input_str:
|
161 |
+
return "No input provided!"
|
162 |
+
model_out = to_model(input_str)
|
163 |
+
funs, args = to_app(model_out)
|
164 |
+
output_obj = application(funs, args)
|
165 |
+
return output_obj
|
166 |
|
167 |
def respond(
|
168 |
message,
|
|
|
182 |
|
183 |
messages.append({"role": "user", "content": message})
|
184 |
|
185 |
+
response = process_input(message)
|
186 |
|
187 |
for message in client.chat_completion(
|
188 |
messages,
|
|
|
203 |
demo = gr.ChatInterface(
|
204 |
respond,
|
205 |
additional_inputs=[
|
|
|
206 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
207 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
208 |
gr.Slider(
|