File size: 24,139 Bytes
c332d94
 
 
a053391
 
 
 
 
 
 
 
 
bcd9f19
 
 
 
 
710f982
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8df2f1f
 
 
 
710f982
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bcd9f19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c332d94
bcd9f19
 
 
 
 
 
a053391
 
 
 
c332d94
a053391
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
710f982
 
 
4531628
 
 
710f982
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40747f3
702f656
 
710f982
 
a053391
710f982
c332d94
 
 
 
b964957
c332d94
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
import gradio as gr
import numpy as np
from PIL import Image
import torch.nn as nn
import math
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import torch
from typing import Dict
import functools
import inspect
from types import SimpleNamespace
from torch.utils.data import Dataset
from torchvision import transforms
import rasterio
from pathlib import Path
from torchvision.transforms import ToPILImage
from base64 import b64encode
import gc
from datasets import load_dataset
import torchvision
import torch.nn.functional as F
from IPython.display import HTML
from matplotlib import pyplot as plt
from pathlib import Path
from torch import autocast
from torchvision import transforms as tfms
from tqdm.auto import tqdm
from transformers import CLIPTextModel, CLIPTokenizer, logging
import os
import csv
from torchvision.utils import save_image
import torch
import cv2
from PIL import Image
import os
from django.conf import settings
import torch.nn.functional as F
import os
import torch
from transformers import AutoImageProcessor, SwinModel
from diffusers import UNet2DConditionModel

def load_models():
    torch_device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')

    image_processor_model_path = 'models/image_processor/image_processor'
    swin_transformer_model_path = 'models/swin_transformer/swin_transformer'
    vae_model_path = 'models/vae/vae/MonoChannelVAE.pth'
    unet_model_path = 'models/unet/unet'

    image_processor = AutoImageProcessor.from_pretrained(image_processor_model_path)
    swin_transformer = SwinModel.from_pretrained(swin_transformer_model_path)

    vae = Autoencoder()
    vae.load_state_dict(torch.load(vae_model_path, map_location=torch.device('cpu')))
    unet = UNet2DConditionModel.from_pretrained(unet_model_path)
    scheduler = DDIMScheduler(beta_start=0.0001, beta_end=0.02, beta_schedule='linear',
                                         num_train_timesteps=1000)

    vae = vae.to(torch_device)
    swin_transformer = swin_transformer.to(torch_device)
    unet = unet.to(torch_device)

    return image_processor, swin_transformer, vae, unet, scheduler

def tensor_to_latent(input_im,vae):
  with torch.no_grad():
    latent = vae.encoder(input_im)
  return latent

def latent_to_tensor(input_im,vae):
  with torch.no_grad():
    images = vae.decoder(input_im)
  return images

def upscale_resolution(image):
  sr = cv2.dnn_superres.DnnSuperResImpl_create()
  path = os.path.join(settings.BASE_DIR, 'depthAPI', 'models', 'FSRCNN','FSRCNN_x2.pb')
  sr.readModel(path)
  sr.setModel("fsrcnn",2)
  result = sr.upsample(image)
  resized = cv2.resize(image,dsize=None,fx=2,fy=2)
  img = Image.fromarray(resized.astype('uint8'))
  return img

def extract_features(image,torch_device,swin_transformer):
  image.to(torch_device)
  with torch.no_grad():
    swin_output = swin_transformer(**image)
  del image
  image_fea = swin_output.last_hidden_state.squeeze(0)
  return image_fea

def rescale(image):
  max_val = torch.max(image)
  min_val = torch.min(image)

  image = (((image - min_val) / (max_val - min_val)) * 2) - 1
  return image

def normalize(x):
  return 2 * (x - x.min()) / (x.max() - x.min()) - 1

def upscale_tensor(image):
  output = F.interpolate(image.unsqueeze(0), size=(512, 512), mode='bilinear', align_corners=False)
  return output.squeeze(0)


class UAHiRISEDataset(Dataset):
    def __init__(self, root, stage, transform=None):
        self.root = Path(root)
        self.stage = stage
        self.transform = transform
        self.filenames = self._read_split()

    def __len__(self):
        return len(self.filenames)

    def __getitem__(self, idx):
        filename = self.filenames[idx]
        raster_path = self.root / filename

        raster = rasterio.open(raster_path)

        left = raster.read(1).astype('uint8')
        dtm = raster.read(2)

        # converting absolute heigths to relative depths
        dtm = abs(dtm - dtm.min())

        to_pil = ToPILImage()

        to_transform = {"image": to_pil(left).convert('RGB'), "dtm": dtm}

        return self.transform(to_transform)
        # return to_transform

    def _add_channels(self, image):
        img_expanded = np.stack([image, image, image], axis=-1)
        img_tensor = torch.from_numpy(img_expanded).permute(2, 0, 1)
        return img_tensor

    def set_transform(self, transform):
        self.transform = transform

    def _read_split(self):
        split_filename = f'uahirise_{self.stage}.txt'
        split_filepath = Path(f'filenames/{split_filename}')
        filenames = split_filepath.read_text().splitlines()
        return filenames
        
class Autoencoder(nn.Module):
  def __init__(self):
    super().__init__()
    # N, 1 512,512

    self.encoder = nn.Sequential(
        #  nn.Conv2d(input_channel,16,3,stride=2, padding=1),
        nn.Conv2d(1,2,3,stride=2, padding=1),  # N, 2, 256, 256
        nn.ReLU(),
        nn.Conv2d(2,3,3,stride=2, padding=1), # N, 3, 128, 128
        nn.ReLU(),
        nn.Conv2d(3,4,3,stride=2, padding=1), # N, 4, 64, 64
    )

    self.decoder = nn.Sequential(
        nn.ConvTranspose2d(4,3,3,stride=2, padding=1, output_padding=1),
        nn.ReLU(),
        nn.ConvTranspose2d(3,2,3,stride=2, padding=1,output_padding=1),
        nn.ReLU(),
        nn.ConvTranspose2d(2,1,3,stride=2, padding=1,output_padding=1),
        nn.Tanh()
    )

  def forward(self,x):
    encoded = self.encoder(x)
    decoded = self.decoder(encoded)
    return decoded

def register_to_config(init):
    r"""
    Decorator to apply on the init of classes inheriting from [`ConfigMixin`] so that all the arguments are
    automatically sent to `self.register_for_config`. To ignore a specific argument accepted by the init but that
    shouldn't be registered in the config, use the `ignore_for_config` class variable
    Warning: Once decorated, all private arguments (beginning with an underscore) are trashed and not sent to the init!
    """

    @functools.wraps(init)
    def inner_init(self, *args, **kwargs):
        # Ignore private kwargs in the init.
        init_kwargs = {k: v for k, v in kwargs.items() if not k.startswith("_")}
        config_init_kwargs = {k: v for k, v in kwargs.items() if k.startswith("_")}

        ignore = getattr(self, "ignore_for_config", [])
        # Get positional arguments aligned with kwargs
        new_kwargs = {}
        signature = inspect.signature(init)
        parameters = {
            name: p.default for i, (name, p) in enumerate(signature.parameters.items()) if i > 0 and name not in ignore
        }
        for arg, name in zip(args, parameters.keys()):
            new_kwargs[name] = arg

        # Then add all kwargs
        new_kwargs.update(
            {
                k: init_kwargs.get(k, default)
                for k, default in parameters.items()
                if k not in ignore and k not in new_kwargs
            }
        )
        new_kwargs = {**config_init_kwargs, **new_kwargs}
        getattr(self, "register_to_config")(**new_kwargs)
        init(self, *args, **init_kwargs)

    return inner_init


def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999) -> torch.Tensor:
    """
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].

    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): the maximum beta to use; use values lower than 1 to
                     prevent singularities.

    Returns:
        betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
    """

    def alpha_bar(time_step):
        return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
        betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
    return torch.tensor(betas)


class DDIMScheduler():
    config_name = "scheduler_config.json"
    _deprecated_kwargs = ["predict_epsilon"]
    order = 1

    @register_to_config
    def __init__(
        self,
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
        trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
        clip_sample: bool = False,
        set_alpha_to_one: bool = True,
        steps_offset: int = 0,
        prediction_type: str = "epsilon",
        **kwargs,
    ):
        message = (
            "Please make sure to instantiate your scheduler with `prediction_type` instead. E.g. `scheduler ="
            " DDIMScheduler.from_pretrained(<model_id>, prediction_type='epsilon')`."
        )
        predict_epsilon = kwargs.get('predict_epsilon', None)
        if predict_epsilon is not None:
            self.register_to_config(prediction_type="epsilon" if predict_epsilon else "sample")

        if trained_betas is not None:
            self.betas = torch.tensor(trained_betas, dtype=torch.float32)
        elif beta_schedule == "linear":
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
            self.betas = (
                torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
            )
        elif beta_schedule == "squaredcos_cap_v2":
            # Glide cosine schedule
            self.betas = betas_for_alpha_bar(num_train_timesteps)
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)

        # At every step in ddim, we are looking into the previous alphas_cumprod
        # For the final step, there is no previous alphas_cumprod because we are already at 0
        # `set_alpha_to_one` decides whether we set this parameter simply to one or
        # whether we use the final alpha of the "non-previous" one.
        self.final_alpha_cumprod = torch.tensor(1.0) if set_alpha_to_one else self.alphas_cumprod[0]

        # standard deviation of the initial noise distribution
        self.init_noise_sigma = 1.0

        # setable values
        self.num_inference_steps = None
        self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy().astype(np.int64))

    def register_to_config(self, **kwargs):
        if self.config_name is None:
            raise NotImplementedError(f"Make sure that {self.__class__} has defined a class name `config_name`")
        # Special case for `kwargs` used in deprecation warning added to schedulers
        # TODO: remove this when we remove the deprecation warning, and the `kwargs` argument,
        # or solve in a more general way.
        kwargs.pop("kwargs", None)
        for key, value in kwargs.items():
            try:
                setattr(self, key, value)
            except AttributeError as err:
                print(f"Can't set {key} with value {value} for {self}")
                raise err

        if not hasattr(self, "_internal_dict"):
            internal_dict = kwargs
        else:
            previous_dict = dict(self._internal_dict)
            internal_dict = {**self._internal_dict, **kwargs}
            print(f"Updating config from {previous_dict} to {internal_dict}")

        self._internal_dict = internal_dict

    @property
    def config(self):
        """
        Returns the config of the class as a frozen dictionary
        Returns:
            `Dict[str, Any]`: Config of the class.
        """
        return SimpleNamespace(**self._internal_dict)

    def scale_model_input(self, sample: torch.FloatTensor, timestep: Optional[int] = None) -> torch.FloatTensor:
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.

        Args:
            sample (`torch.FloatTensor`): input sample
            timestep (`int`, optional): current timestep

        Returns:
            `torch.FloatTensor`: scaled input sample
        """
        return sample

    def _get_variance(self, timestep, prev_timestep):
        alpha_prod_t = self.alphas_cumprod[timestep]
        alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
        beta_prod_t = 1 - alpha_prod_t
        beta_prod_t_prev = 1 - alpha_prod_t_prev

        variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev)

        return variance

    def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
        """
        Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference.

        Args:
            num_inference_steps (`int`):
                the number of diffusion steps used when generating samples with a pre-trained model.
        """
        self.num_inference_steps = num_inference_steps
        step_ratio = self.config.num_train_timesteps // self.num_inference_steps
        # creates integer timesteps by multiplying by ratio
        # casting to int to avoid issues when num_inference_step is power of 3
        timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64)
        self.timesteps = torch.from_numpy(timesteps).to(device)
        self.timesteps += self.config.steps_offset

    def step(
        self,
        model_output: torch.FloatTensor,
        timestep: int,
        sample: torch.FloatTensor,
        eta: float = 0.0,
        use_clipped_model_output: bool = False,
        generator=None,
        variance_noise: Optional[torch.FloatTensor] = None,
        return_dict: bool = True,
    ) -> Union[Dict, Tuple]:
        """
        Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
        process from the learned model outputs (most often the predicted noise).

        Args:
            model_output (`torch.FloatTensor`): direct output from learned diffusion model.
            timestep (`int`): current discrete timestep in the diffusion chain.
            sample (`torch.FloatTensor`):
                current instance of sample being created by diffusion process.
            eta (`float`): weight of noise for added noise in diffusion step.
            use_clipped_model_output (`bool`): if `True`, compute "corrected" `model_output` from the clipped
                predicted original sample. Necessary because predicted original sample is clipped to [-1, 1] when
                `self.config.clip_sample` is `True`. If no clipping has happened, "corrected" `model_output` would
                coincide with the one provided as input and `use_clipped_model_output` will have not effect.
            generator: random number generator.
            variance_noise (`torch.FloatTensor`): instead of generating noise for the variance using `generator`, we
                can directly provide the noise for the variance itself. This is useful for methods such as
                CycleDiffusion. (https://arxiv.org/abs/2210.05559)
            return_dict (`bool`): option for returning tuple rather than DDIMSchedulerOutput class

        Returns:
            [`~schedulers.scheduling_utils.DDIMSchedulerOutput`] or `tuple`:
            [`~schedulers.scheduling_utils.DDIMSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When
            returning a tuple, the first element is the sample tensor.

        """
        if self.num_inference_steps is None:
            raise ValueError(
                "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
            )

        # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
        # Ideally, read DDIM paper in-detail understanding

        # Notation (<variable name> -> <name in paper>
        # - pred_noise_t -> e_theta(x_t, t)
        # - pred_original_sample -> f_theta(x_t, t) or x_0
        # - std_dev_t -> sigma_t
        # - eta -> η
        # - pred_sample_direction -> "direction pointing to x_t"
        # - pred_prev_sample -> "x_t-1"

        # 1. get previous step value (=t-1)
        prev_timestep = timestep - self.config.num_train_timesteps // self.num_inference_steps

        # 2. compute alphas, betas
        alpha_prod_t = self.alphas_cumprod[timestep]
        alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod

        beta_prod_t = 1 - alpha_prod_t

        # 3. compute predicted original sample from predicted noise also called
        # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
        if self.config.prediction_type == "epsilon":
            pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
        elif self.config.prediction_type == "sample":
            pred_original_sample = model_output
        elif self.config.prediction_type == "v_prediction":
            pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
            # predict V
            model_output = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample
        else:
            raise ValueError(
                f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
                " `v_prediction`"
            )

        # 4. Clip "predicted x_0"
        if self.config.clip_sample:
            pred_original_sample = torch.clamp(pred_original_sample, -1, 1)

        # 5. compute variance: "sigma_t(η)" -> see formula (16)
        # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
        variance = self._get_variance(timestep, prev_timestep)
        std_dev_t = eta * variance ** (0.5)

        if use_clipped_model_output:
            # the model_output is always re-derived from the clipped x_0 in Glide
            model_output = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5)

        # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
        pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * model_output

        # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
        prev_sample = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction

        if eta > 0:
            # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072
            device = model_output.device
            if variance_noise is not None and generator is not None:
                raise ValueError(
                    "Cannot pass both generator and variance_noise. Please make sure that either `generator` or"
                    " `variance_noise` stays `None`."
                )

            if variance_noise is None:
                if device.type == "mps":
                    # randn does not work reproducibly on mps
                    variance_noise = torch.randn(model_output.shape, dtype=model_output.dtype, generator=generator)
                    variance_noise = variance_noise.to(device)
                else:
                    variance_noise = torch.randn(
                        model_output.shape, generator=generator, device=device, dtype=model_output.dtype
                    )
            variance = self._get_variance(timestep, prev_timestep) ** (0.5) * eta * variance_noise

            prev_sample = prev_sample + variance

        if not return_dict:
            return (prev_sample,)

        return dict(prev_sample=prev_sample, pred_original_sample=pred_original_sample)

    def add_noise(
        self,
        original_samples: torch.FloatTensor,
        noise: torch.FloatTensor,
        timesteps: torch.IntTensor,
    ) -> torch.FloatTensor:
        # Make sure alphas_cumprod and timestep have same device and dtype as original_samples
        self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype)
        timesteps = timesteps.to(original_samples.device)

        sqrt_alpha_prod = self.alphas_cumprod[timesteps] ** 0.5
        sqrt_alpha_prod = sqrt_alpha_prod.flatten()
        while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
            sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)

        sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps]) ** 0.5
        sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
        while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
            sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)

        noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
        return noisy_samples

    def get_velocity(
        self, sample: torch.FloatTensor, noise: torch.FloatTensor, timesteps: torch.IntTensor
    ) -> torch.FloatTensor:
        # Make sure alphas_cumprod and timestep have same device and dtype as sample
        self.alphas_cumprod = self.alphas_cumprod.to(device=sample.device, dtype=sample.dtype)
        timesteps = timesteps.to(sample.device)

        sqrt_alpha_prod = self.alphas_cumprod[timesteps] ** 0.5
        sqrt_alpha_prod = sqrt_alpha_prod.flatten()
        while len(sqrt_alpha_prod.shape) < len(sample.shape):
            sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)

        sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps]) ** 0.5
        sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
        while len(sqrt_one_minus_alpha_prod.shape) < len(sample.shape):
            sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)

        velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample
        return velocity

    def __len__(self):
        return self.config.num_train_timesteps


image_processor, swin_transformer, vae, unet, scheduler = load_models()

def MonoGeoDepthModelRun(numpy_image):
    numpy_image = numpy_image.astype(np.uint8)
    image = Image.fromarray(numpy_image)
    batch_size=1
    torch_device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')



    image = image.convert("RGB")
    extracted_image = image_processor(image, return_tensors="pt")
    image_embeddings = extract_features(extracted_image, torch_device, swin_transformer)
    image_embeddings = image_embeddings.unsqueeze(0)

    torch.manual_seed(0)
    random_noise = normalize(torch.randn(1, 1, 512, 512).to(torch_device))

    image_embeddings = image_embeddings.to(torch_device)

    with torch.no_grad():
        noisy_latents = tensor_to_latent(random_noise, vae)
        del random_noise
        t = torch.tensor(1000)
        model_input = scheduler.scale_model_input(noisy_latents, t)
        noise_pred = unet(model_input, t, encoder_hidden_states=image_embeddings, return_dict=False)
        noisy_latents = model_input - noise_pred[0]
        predicted_dtm = latent_to_tensor(noisy_latents, vae)
        predicted_dtm = predicted_dtm.detach().cpu()

        image_ = predicted_dtm.squeeze(0)
        image_ = (image_ - image_.min()) / (image_.max() - image_.min())
        
        to_pil = ToPILImage()
        predicted_dtm = to_pil(image_)

    return predicted_dtm
        
def model(img):
    img_array = np.array(img)
    return img_array

iface = gr.Interface(
    fn=MonoGeoDepthModelRun,
    inputs="image",
    outputs="image"
)

iface.launch()