Spaces:
Sleeping
Sleeping
File size: 24,139 Bytes
c332d94 a053391 bcd9f19 710f982 8df2f1f 710f982 bcd9f19 c332d94 bcd9f19 a053391 c332d94 a053391 710f982 4531628 710f982 40747f3 702f656 710f982 a053391 710f982 c332d94 b964957 c332d94 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 |
import gradio as gr
import numpy as np
from PIL import Image
import torch.nn as nn
import math
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import torch
from typing import Dict
import functools
import inspect
from types import SimpleNamespace
from torch.utils.data import Dataset
from torchvision import transforms
import rasterio
from pathlib import Path
from torchvision.transforms import ToPILImage
from base64 import b64encode
import gc
from datasets import load_dataset
import torchvision
import torch.nn.functional as F
from IPython.display import HTML
from matplotlib import pyplot as plt
from pathlib import Path
from torch import autocast
from torchvision import transforms as tfms
from tqdm.auto import tqdm
from transformers import CLIPTextModel, CLIPTokenizer, logging
import os
import csv
from torchvision.utils import save_image
import torch
import cv2
from PIL import Image
import os
from django.conf import settings
import torch.nn.functional as F
import os
import torch
from transformers import AutoImageProcessor, SwinModel
from diffusers import UNet2DConditionModel
def load_models():
torch_device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
image_processor_model_path = 'models/image_processor/image_processor'
swin_transformer_model_path = 'models/swin_transformer/swin_transformer'
vae_model_path = 'models/vae/vae/MonoChannelVAE.pth'
unet_model_path = 'models/unet/unet'
image_processor = AutoImageProcessor.from_pretrained(image_processor_model_path)
swin_transformer = SwinModel.from_pretrained(swin_transformer_model_path)
vae = Autoencoder()
vae.load_state_dict(torch.load(vae_model_path, map_location=torch.device('cpu')))
unet = UNet2DConditionModel.from_pretrained(unet_model_path)
scheduler = DDIMScheduler(beta_start=0.0001, beta_end=0.02, beta_schedule='linear',
num_train_timesteps=1000)
vae = vae.to(torch_device)
swin_transformer = swin_transformer.to(torch_device)
unet = unet.to(torch_device)
return image_processor, swin_transformer, vae, unet, scheduler
def tensor_to_latent(input_im,vae):
with torch.no_grad():
latent = vae.encoder(input_im)
return latent
def latent_to_tensor(input_im,vae):
with torch.no_grad():
images = vae.decoder(input_im)
return images
def upscale_resolution(image):
sr = cv2.dnn_superres.DnnSuperResImpl_create()
path = os.path.join(settings.BASE_DIR, 'depthAPI', 'models', 'FSRCNN','FSRCNN_x2.pb')
sr.readModel(path)
sr.setModel("fsrcnn",2)
result = sr.upsample(image)
resized = cv2.resize(image,dsize=None,fx=2,fy=2)
img = Image.fromarray(resized.astype('uint8'))
return img
def extract_features(image,torch_device,swin_transformer):
image.to(torch_device)
with torch.no_grad():
swin_output = swin_transformer(**image)
del image
image_fea = swin_output.last_hidden_state.squeeze(0)
return image_fea
def rescale(image):
max_val = torch.max(image)
min_val = torch.min(image)
image = (((image - min_val) / (max_val - min_val)) * 2) - 1
return image
def normalize(x):
return 2 * (x - x.min()) / (x.max() - x.min()) - 1
def upscale_tensor(image):
output = F.interpolate(image.unsqueeze(0), size=(512, 512), mode='bilinear', align_corners=False)
return output.squeeze(0)
class UAHiRISEDataset(Dataset):
def __init__(self, root, stage, transform=None):
self.root = Path(root)
self.stage = stage
self.transform = transform
self.filenames = self._read_split()
def __len__(self):
return len(self.filenames)
def __getitem__(self, idx):
filename = self.filenames[idx]
raster_path = self.root / filename
raster = rasterio.open(raster_path)
left = raster.read(1).astype('uint8')
dtm = raster.read(2)
# converting absolute heigths to relative depths
dtm = abs(dtm - dtm.min())
to_pil = ToPILImage()
to_transform = {"image": to_pil(left).convert('RGB'), "dtm": dtm}
return self.transform(to_transform)
# return to_transform
def _add_channels(self, image):
img_expanded = np.stack([image, image, image], axis=-1)
img_tensor = torch.from_numpy(img_expanded).permute(2, 0, 1)
return img_tensor
def set_transform(self, transform):
self.transform = transform
def _read_split(self):
split_filename = f'uahirise_{self.stage}.txt'
split_filepath = Path(f'filenames/{split_filename}')
filenames = split_filepath.read_text().splitlines()
return filenames
class Autoencoder(nn.Module):
def __init__(self):
super().__init__()
# N, 1 512,512
self.encoder = nn.Sequential(
# nn.Conv2d(input_channel,16,3,stride=2, padding=1),
nn.Conv2d(1,2,3,stride=2, padding=1), # N, 2, 256, 256
nn.ReLU(),
nn.Conv2d(2,3,3,stride=2, padding=1), # N, 3, 128, 128
nn.ReLU(),
nn.Conv2d(3,4,3,stride=2, padding=1), # N, 4, 64, 64
)
self.decoder = nn.Sequential(
nn.ConvTranspose2d(4,3,3,stride=2, padding=1, output_padding=1),
nn.ReLU(),
nn.ConvTranspose2d(3,2,3,stride=2, padding=1,output_padding=1),
nn.ReLU(),
nn.ConvTranspose2d(2,1,3,stride=2, padding=1,output_padding=1),
nn.Tanh()
)
def forward(self,x):
encoded = self.encoder(x)
decoded = self.decoder(encoded)
return decoded
def register_to_config(init):
r"""
Decorator to apply on the init of classes inheriting from [`ConfigMixin`] so that all the arguments are
automatically sent to `self.register_for_config`. To ignore a specific argument accepted by the init but that
shouldn't be registered in the config, use the `ignore_for_config` class variable
Warning: Once decorated, all private arguments (beginning with an underscore) are trashed and not sent to the init!
"""
@functools.wraps(init)
def inner_init(self, *args, **kwargs):
# Ignore private kwargs in the init.
init_kwargs = {k: v for k, v in kwargs.items() if not k.startswith("_")}
config_init_kwargs = {k: v for k, v in kwargs.items() if k.startswith("_")}
ignore = getattr(self, "ignore_for_config", [])
# Get positional arguments aligned with kwargs
new_kwargs = {}
signature = inspect.signature(init)
parameters = {
name: p.default for i, (name, p) in enumerate(signature.parameters.items()) if i > 0 and name not in ignore
}
for arg, name in zip(args, parameters.keys()):
new_kwargs[name] = arg
# Then add all kwargs
new_kwargs.update(
{
k: init_kwargs.get(k, default)
for k, default in parameters.items()
if k not in ignore and k not in new_kwargs
}
)
new_kwargs = {**config_init_kwargs, **new_kwargs}
getattr(self, "register_to_config")(**new_kwargs)
init(self, *args, **init_kwargs)
return inner_init
def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999) -> torch.Tensor:
"""
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
(1-beta) over time from t = [0,1].
Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
to that part of the diffusion process.
Args:
num_diffusion_timesteps (`int`): the number of betas to produce.
max_beta (`float`): the maximum beta to use; use values lower than 1 to
prevent singularities.
Returns:
betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
"""
def alpha_bar(time_step):
return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2
betas = []
for i in range(num_diffusion_timesteps):
t1 = i / num_diffusion_timesteps
t2 = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
return torch.tensor(betas)
class DDIMScheduler():
config_name = "scheduler_config.json"
_deprecated_kwargs = ["predict_epsilon"]
order = 1
@register_to_config
def __init__(
self,
num_train_timesteps: int = 1000,
beta_start: float = 0.0001,
beta_end: float = 0.02,
beta_schedule: str = "linear",
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
clip_sample: bool = False,
set_alpha_to_one: bool = True,
steps_offset: int = 0,
prediction_type: str = "epsilon",
**kwargs,
):
message = (
"Please make sure to instantiate your scheduler with `prediction_type` instead. E.g. `scheduler ="
" DDIMScheduler.from_pretrained(<model_id>, prediction_type='epsilon')`."
)
predict_epsilon = kwargs.get('predict_epsilon', None)
if predict_epsilon is not None:
self.register_to_config(prediction_type="epsilon" if predict_epsilon else "sample")
if trained_betas is not None:
self.betas = torch.tensor(trained_betas, dtype=torch.float32)
elif beta_schedule == "linear":
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
elif beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
self.betas = (
torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
)
elif beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
self.betas = betas_for_alpha_bar(num_train_timesteps)
else:
raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
self.alphas = 1.0 - self.betas
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
# At every step in ddim, we are looking into the previous alphas_cumprod
# For the final step, there is no previous alphas_cumprod because we are already at 0
# `set_alpha_to_one` decides whether we set this parameter simply to one or
# whether we use the final alpha of the "non-previous" one.
self.final_alpha_cumprod = torch.tensor(1.0) if set_alpha_to_one else self.alphas_cumprod[0]
# standard deviation of the initial noise distribution
self.init_noise_sigma = 1.0
# setable values
self.num_inference_steps = None
self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy().astype(np.int64))
def register_to_config(self, **kwargs):
if self.config_name is None:
raise NotImplementedError(f"Make sure that {self.__class__} has defined a class name `config_name`")
# Special case for `kwargs` used in deprecation warning added to schedulers
# TODO: remove this when we remove the deprecation warning, and the `kwargs` argument,
# or solve in a more general way.
kwargs.pop("kwargs", None)
for key, value in kwargs.items():
try:
setattr(self, key, value)
except AttributeError as err:
print(f"Can't set {key} with value {value} for {self}")
raise err
if not hasattr(self, "_internal_dict"):
internal_dict = kwargs
else:
previous_dict = dict(self._internal_dict)
internal_dict = {**self._internal_dict, **kwargs}
print(f"Updating config from {previous_dict} to {internal_dict}")
self._internal_dict = internal_dict
@property
def config(self):
"""
Returns the config of the class as a frozen dictionary
Returns:
`Dict[str, Any]`: Config of the class.
"""
return SimpleNamespace(**self._internal_dict)
def scale_model_input(self, sample: torch.FloatTensor, timestep: Optional[int] = None) -> torch.FloatTensor:
"""
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
current timestep.
Args:
sample (`torch.FloatTensor`): input sample
timestep (`int`, optional): current timestep
Returns:
`torch.FloatTensor`: scaled input sample
"""
return sample
def _get_variance(self, timestep, prev_timestep):
alpha_prod_t = self.alphas_cumprod[timestep]
alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
beta_prod_t = 1 - alpha_prod_t
beta_prod_t_prev = 1 - alpha_prod_t_prev
variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev)
return variance
def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
"""
Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference.
Args:
num_inference_steps (`int`):
the number of diffusion steps used when generating samples with a pre-trained model.
"""
self.num_inference_steps = num_inference_steps
step_ratio = self.config.num_train_timesteps // self.num_inference_steps
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64)
self.timesteps = torch.from_numpy(timesteps).to(device)
self.timesteps += self.config.steps_offset
def step(
self,
model_output: torch.FloatTensor,
timestep: int,
sample: torch.FloatTensor,
eta: float = 0.0,
use_clipped_model_output: bool = False,
generator=None,
variance_noise: Optional[torch.FloatTensor] = None,
return_dict: bool = True,
) -> Union[Dict, Tuple]:
"""
Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
process from the learned model outputs (most often the predicted noise).
Args:
model_output (`torch.FloatTensor`): direct output from learned diffusion model.
timestep (`int`): current discrete timestep in the diffusion chain.
sample (`torch.FloatTensor`):
current instance of sample being created by diffusion process.
eta (`float`): weight of noise for added noise in diffusion step.
use_clipped_model_output (`bool`): if `True`, compute "corrected" `model_output` from the clipped
predicted original sample. Necessary because predicted original sample is clipped to [-1, 1] when
`self.config.clip_sample` is `True`. If no clipping has happened, "corrected" `model_output` would
coincide with the one provided as input and `use_clipped_model_output` will have not effect.
generator: random number generator.
variance_noise (`torch.FloatTensor`): instead of generating noise for the variance using `generator`, we
can directly provide the noise for the variance itself. This is useful for methods such as
CycleDiffusion. (https://arxiv.org/abs/2210.05559)
return_dict (`bool`): option for returning tuple rather than DDIMSchedulerOutput class
Returns:
[`~schedulers.scheduling_utils.DDIMSchedulerOutput`] or `tuple`:
[`~schedulers.scheduling_utils.DDIMSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When
returning a tuple, the first element is the sample tensor.
"""
if self.num_inference_steps is None:
raise ValueError(
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
)
# See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
# Ideally, read DDIM paper in-detail understanding
# Notation (<variable name> -> <name in paper>
# - pred_noise_t -> e_theta(x_t, t)
# - pred_original_sample -> f_theta(x_t, t) or x_0
# - std_dev_t -> sigma_t
# - eta -> η
# - pred_sample_direction -> "direction pointing to x_t"
# - pred_prev_sample -> "x_t-1"
# 1. get previous step value (=t-1)
prev_timestep = timestep - self.config.num_train_timesteps // self.num_inference_steps
# 2. compute alphas, betas
alpha_prod_t = self.alphas_cumprod[timestep]
alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
beta_prod_t = 1 - alpha_prod_t
# 3. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
if self.config.prediction_type == "epsilon":
pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
elif self.config.prediction_type == "sample":
pred_original_sample = model_output
elif self.config.prediction_type == "v_prediction":
pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
# predict V
model_output = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample
else:
raise ValueError(
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
" `v_prediction`"
)
# 4. Clip "predicted x_0"
if self.config.clip_sample:
pred_original_sample = torch.clamp(pred_original_sample, -1, 1)
# 5. compute variance: "sigma_t(η)" -> see formula (16)
# σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
variance = self._get_variance(timestep, prev_timestep)
std_dev_t = eta * variance ** (0.5)
if use_clipped_model_output:
# the model_output is always re-derived from the clipped x_0 in Glide
model_output = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5)
# 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * model_output
# 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
prev_sample = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction
if eta > 0:
# randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072
device = model_output.device
if variance_noise is not None and generator is not None:
raise ValueError(
"Cannot pass both generator and variance_noise. Please make sure that either `generator` or"
" `variance_noise` stays `None`."
)
if variance_noise is None:
if device.type == "mps":
# randn does not work reproducibly on mps
variance_noise = torch.randn(model_output.shape, dtype=model_output.dtype, generator=generator)
variance_noise = variance_noise.to(device)
else:
variance_noise = torch.randn(
model_output.shape, generator=generator, device=device, dtype=model_output.dtype
)
variance = self._get_variance(timestep, prev_timestep) ** (0.5) * eta * variance_noise
prev_sample = prev_sample + variance
if not return_dict:
return (prev_sample,)
return dict(prev_sample=prev_sample, pred_original_sample=pred_original_sample)
def add_noise(
self,
original_samples: torch.FloatTensor,
noise: torch.FloatTensor,
timesteps: torch.IntTensor,
) -> torch.FloatTensor:
# Make sure alphas_cumprod and timestep have same device and dtype as original_samples
self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype)
timesteps = timesteps.to(original_samples.device)
sqrt_alpha_prod = self.alphas_cumprod[timesteps] ** 0.5
sqrt_alpha_prod = sqrt_alpha_prod.flatten()
while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps]) ** 0.5
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
return noisy_samples
def get_velocity(
self, sample: torch.FloatTensor, noise: torch.FloatTensor, timesteps: torch.IntTensor
) -> torch.FloatTensor:
# Make sure alphas_cumprod and timestep have same device and dtype as sample
self.alphas_cumprod = self.alphas_cumprod.to(device=sample.device, dtype=sample.dtype)
timesteps = timesteps.to(sample.device)
sqrt_alpha_prod = self.alphas_cumprod[timesteps] ** 0.5
sqrt_alpha_prod = sqrt_alpha_prod.flatten()
while len(sqrt_alpha_prod.shape) < len(sample.shape):
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps]) ** 0.5
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
while len(sqrt_one_minus_alpha_prod.shape) < len(sample.shape):
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample
return velocity
def __len__(self):
return self.config.num_train_timesteps
image_processor, swin_transformer, vae, unet, scheduler = load_models()
def MonoGeoDepthModelRun(numpy_image):
numpy_image = numpy_image.astype(np.uint8)
image = Image.fromarray(numpy_image)
batch_size=1
torch_device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
image = image.convert("RGB")
extracted_image = image_processor(image, return_tensors="pt")
image_embeddings = extract_features(extracted_image, torch_device, swin_transformer)
image_embeddings = image_embeddings.unsqueeze(0)
torch.manual_seed(0)
random_noise = normalize(torch.randn(1, 1, 512, 512).to(torch_device))
image_embeddings = image_embeddings.to(torch_device)
with torch.no_grad():
noisy_latents = tensor_to_latent(random_noise, vae)
del random_noise
t = torch.tensor(1000)
model_input = scheduler.scale_model_input(noisy_latents, t)
noise_pred = unet(model_input, t, encoder_hidden_states=image_embeddings, return_dict=False)
noisy_latents = model_input - noise_pred[0]
predicted_dtm = latent_to_tensor(noisy_latents, vae)
predicted_dtm = predicted_dtm.detach().cpu()
image_ = predicted_dtm.squeeze(0)
image_ = (image_ - image_.min()) / (image_.max() - image_.min())
to_pil = ToPILImage()
predicted_dtm = to_pil(image_)
return predicted_dtm
def model(img):
img_array = np.array(img)
return img_array
iface = gr.Interface(
fn=MonoGeoDepthModelRun,
inputs="image",
outputs="image"
)
iface.launch() |