Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -549,7 +549,9 @@ class DDIMScheduler():
|
|
549 |
|
550 |
image_processor, swin_transformer, vae, unet, scheduler = load_models()
|
551 |
|
552 |
-
def MonoGeoDepthModelRun(
|
|
|
|
|
553 |
batch_size=1
|
554 |
torch_device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
|
555 |
|
@@ -574,12 +576,14 @@ def MonoGeoDepthModelRun(image):
|
|
574 |
noisy_latents = model_input - noise_pred[0]
|
575 |
predicted_dtm = latent_to_tensor(noisy_latents, vae)
|
576 |
predicted_dtm = predicted_dtm.detach().cpu()
|
|
|
577 |
|
578 |
image_ = predicted_dtm.squeeze(0)
|
579 |
image_ = (image_ - image_.min()) / (image_.max() - image_.min())
|
580 |
|
581 |
to_pil = ToPILImage()
|
582 |
predicted_dtm = to_pil(image_)
|
|
|
583 |
|
584 |
return predicted_dtm
|
585 |
|
|
|
549 |
|
550 |
image_processor, swin_transformer, vae, unet, scheduler = load_models()
|
551 |
|
552 |
+
def MonoGeoDepthModelRun(numpy_image):
|
553 |
+
numpy_image = numpy_image.astype(np.uint8)
|
554 |
+
image = Image.fromarray(numpy_image)
|
555 |
batch_size=1
|
556 |
torch_device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
|
557 |
|
|
|
576 |
noisy_latents = model_input - noise_pred[0]
|
577 |
predicted_dtm = latent_to_tensor(noisy_latents, vae)
|
578 |
predicted_dtm = predicted_dtm.detach().cpu()
|
579 |
+
print("type 1: ",type(predicted_dtm))
|
580 |
|
581 |
image_ = predicted_dtm.squeeze(0)
|
582 |
image_ = (image_ - image_.min()) / (image_.max() - image_.min())
|
583 |
|
584 |
to_pil = ToPILImage()
|
585 |
predicted_dtm = to_pil(image_)
|
586 |
+
print("type 2: ",type(predicted_dtm))
|
587 |
|
588 |
return predicted_dtm
|
589 |
|