Spaces:
Runtime error
Runtime error
import pickle | |
import logging | |
from sklearn.feature_extraction.text import TfidVectorizer | |
from sklearn.pipeline import Pipeline | |
from sklearn.native_bayes import MultinomialNB | |
import uvicorn | |
from fastapi import FastAPI | |
app = FastAPI() | |
strings = set() # Set to store all input strings | |
def predict(input_text: str): | |
# Add the new input string to the set of strings | |
strings.add(input_text) | |
# Train a new model using all strings in the set | |
model = Pipeline([ | |
('vectorizer', TfidVectorizer()), | |
('classifier', MultinomialNB()) | |
]) | |
model.fit(list(strings), list(strings)) | |
# Make a prediction on the new input string | |
prediction = model.predict([input_text])[0] | |
return {"prediction": prediction} | |
# Here you can do things such as load your models | |
def read_root(input_text): | |
logging.info("Received request with input_text: %s", input_text) | |
try: | |
result = predict(input_text) | |
logging.info("Prediction made: %s", result) | |
return result | |
except Exception as e: | |
logging.error("An error occured: %s", e) | |
return {"error": str(e)} |