Spaces:
Runtime error
Runtime error
streetyogi
commited on
Commit
·
c38c542
1
Parent(s):
0e3f8e5
Update inference_server.py
Browse files- inference_server.py +19 -11
inference_server.py
CHANGED
@@ -1,22 +1,30 @@
|
|
|
|
1 |
import logging
|
2 |
-
from sklearn.
|
|
|
|
|
3 |
import uvicorn
|
4 |
from fastapi import FastAPI
|
5 |
|
6 |
app = FastAPI()
|
7 |
|
|
|
|
|
8 |
def predict(input_text: str):
|
9 |
-
|
10 |
-
|
11 |
-
#
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
model.fit(X, X) # In this case, we are using the input data as the labels
|
18 |
-
return model
|
19 |
|
|
|
|
|
20 |
# Here you can do things such as load your models
|
21 |
|
22 |
@app.get("/")
|
@@ -25,7 +33,7 @@ def read_root(input_text):
|
|
25 |
try:
|
26 |
result = predict(input_text)
|
27 |
logging.info("Prediction made: %s", result)
|
28 |
-
return
|
29 |
except Exception as e:
|
30 |
logging.error("An error occured: %s", e)
|
31 |
return {"error": str(e)}
|
|
|
1 |
+
import pickle
|
2 |
import logging
|
3 |
+
from sklearn.feature_extraction.text import TfidVectorizer
|
4 |
+
from sklearn.pipeline import Pipeline
|
5 |
+
from sklearn.native_bayes import MultinomialNB
|
6 |
import uvicorn
|
7 |
from fastapi import FastAPI
|
8 |
|
9 |
app = FastAPI()
|
10 |
|
11 |
+
strings = set() # Set to store all input strings
|
12 |
+
|
13 |
def predict(input_text: str):
|
14 |
+
# Add the new input string to the set of strings
|
15 |
+
strings.add(input_text)
|
16 |
+
# Train a new model using all strings in the set
|
17 |
+
model = Pipeline([
|
18 |
+
('vectorizer', TfidVectorizer()),
|
19 |
+
('classifier', MultinomialNB())
|
20 |
+
])
|
21 |
+
model.fit(list(strings), list(strings))
|
22 |
|
23 |
+
# Make a prediction on the new input string
|
24 |
+
prediction = model.predict([input_text])[0]
|
|
|
|
|
25 |
|
26 |
+
return {"prediction": prediction}
|
27 |
+
|
28 |
# Here you can do things such as load your models
|
29 |
|
30 |
@app.get("/")
|
|
|
33 |
try:
|
34 |
result = predict(input_text)
|
35 |
logging.info("Prediction made: %s", result)
|
36 |
+
return result
|
37 |
except Exception as e:
|
38 |
logging.error("An error occured: %s", e)
|
39 |
return {"error": str(e)}
|