File size: 1,865 Bytes
5b20f74 fed2572 5b20f74 e179aad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
---
title: Bertimbau Finetuned Glassdoor Reviews
emoji: 🏢
colorFrom: gray
colorTo: green
sdk: streamlit
sdk_version: 1.41.1
app_file: app.py
pinned: false
license: mit
short_description: Sentiment Analysis of Glassdoor reviews using BERTimbau
---
# Bertimbau Finetuned Glassdoor Reviews
This project provides a Streamlit web application for classifying Glassdoor reviews into sentiment categories using a fine-tuned BERT model. The model is based on the pre-trained BERT model from [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) and fine-tuned on Glassdoor review data.
## Model
The model architecture and training process can be found at [glassdoor-reviews-analysis-nlp](https://github.com/stevillis/glassdoor-reviews-analysis-nlp).
## Installation
To run this project locally, follow these steps:
1. Download the [pytorch_model.bin](https://huggingface.co/stevillis/bertimbau-finetuned-glassdoor-reviews/blob/main/pytorch_model.bin) from `stevillis/bertimbau-finetuned-glassdoor-reviews`.
2. Clone the repository:
```sh
git clone https://github.com/your-username/bertimbau-finetuned-glassdoor-reviews.git
cd bertimbau-finetuned-glassdoor-reviews
```
3. Create a virtual environment and activate it:
```sh
python -m venv venv
source venv/bin/activate # On Windows, use `venv\Scripts\activate`
```
4. Install the required dependencies:
```sh
pip install -r requirements.txt
```
5. Move the **pytorch_model.bin** to `bertimbau-finetuned-glassdoor-reviews` directory.
6. Run the Streamlit application:
```sh
streamlit run app.py
```
## Usage
1. Open your web browser and go to `http://localhost:8501`.
2. Enter a Glassdoor review text in the input box.
3. The application will display the predicted sentiment and its corresponding score.
|