stevillis commited on
Commit
e179aad
·
1 Parent(s): 78b7771

docs: describe project and installation instructions

Browse files
Files changed (1) hide show
  1. README.md +44 -2
README.md CHANGED
@@ -8,7 +8,49 @@ sdk_version: 1.41.1
8
  app_file: app.py
9
  pinned: false
10
  license: mit
11
- short_description: BERTimbau finetuned for Sent Analysis Glassdoor reviews
12
  ---
13
 
14
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
  app_file: app.py
9
  pinned: false
10
  license: mit
11
+ short_description: BERTimbau finetuned for Sentiment Analysis of Glassdoor reviews
12
  ---
13
 
14
+ # Bertimbau Finetuned Glassdoor Reviews
15
+
16
+ This project provides a Streamlit web application for classifying Glassdoor reviews into sentiment categories using a fine-tuned BERT model. The model is based on the pre-trained BERT model from [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) and fine-tuned on Glassdoor review data.
17
+
18
+ ## Model
19
+
20
+ The model architecture and training process can be found at [glassdoor-reviews-analysis-nlp](https://github.com/stevillis/glassdoor-reviews-analysis-nlp).
21
+
22
+ ## Installation
23
+
24
+ To run this project locally, follow these steps:
25
+
26
+ 1. Download the [pytorch_model.bin](https://huggingface.co/stevillis/bertimbau-finetuned-glassdoor-reviews/blob/main/pytorch_model.bin) from `stevillis/bertimbau-finetuned-glassdoor-reviews`.
27
+
28
+ 2. Clone the repository:
29
+ ```sh
30
+ git clone https://github.com/your-username/bertimbau-finetuned-glassdoor-reviews.git
31
+ cd bertimbau-finetuned-glassdoor-reviews
32
+ ```
33
+
34
+ 3. Create a virtual environment and activate it:
35
+ ```sh
36
+ python -m venv venv
37
+ source venv/bin/activate # On Windows, use `venv\Scripts\activate`
38
+ ```
39
+
40
+ 4. Install the required dependencies:
41
+ ```sh
42
+ pip install -r requirements.txt
43
+ ```
44
+
45
+ 5. Move the **pytorch_model.bin** to `bertimbau-finetuned-glassdoor-reviews` directory.
46
+
47
+ 6. Run the Streamlit application:
48
+ ```sh
49
+ streamlit run app.py
50
+ ```
51
+
52
+ ## Usage
53
+
54
+ 1. Open your web browser and go to `http://localhost:8501`.
55
+ 2. Enter a Glassdoor review text in the input box.
56
+ 3. The application will display the predicted sentiment and its corresponding score.