sneed / README.md
nateraw's picture
lol
57d1795
# IterVM: Iterative Vision Modeling Module for Scene Text Recognition
The official code of [IterNet](https://arxiv.org/abs/2204.02630).
We propose IterVM, an iterative approach for visual feature extraction which can significantly improve scene text recognition accuracy.
IterVM repeatedly uses the high-level visual feature extracted at the previous iteration to enhance the multi-level features extracted at the subsequent iteration.
![framework](./figures/framework.png)
## Runtime Environment
```
pip install -r requirements.txt
```
Note: `fastai==1.0.60` is required.
## Datasets
<details>
<summary>Training datasets (Click to expand) </summary>
1. [MJSynth](http://www.robots.ox.ac.uk/~vgg/data/text/) (MJ):
- Use `tools/create_lmdb_dataset.py` to convert images into LMDB dataset
- [LMDB dataset BaiduNetdisk(passwd:n23k)](https://pan.baidu.com/s/1mgnTiyoR8f6Cm655rFI4HQ)
2. [SynthText](http://www.robots.ox.ac.uk/~vgg/data/scenetext/) (ST):
- Use `tools/crop_by_word_bb.py` to crop images from original [SynthText](http://www.robots.ox.ac.uk/~vgg/data/scenetext/) dataset, and convert images into LMDB dataset by `tools/create_lmdb_dataset.py`
- [LMDB dataset BaiduNetdisk(passwd:n23k)](https://pan.baidu.com/s/1mgnTiyoR8f6Cm655rFI4HQ)
3. [WikiText103](https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-103-v1.zip), which is only used for pre-trainig language models:
- Use `notebooks/prepare_wikitext103.ipynb` to convert text into CSV format.
- [CSV dataset BaiduNetdisk(passwd:dk01)](https://pan.baidu.com/s/1yabtnPYDKqhBb_Ie9PGFXA)
</details>
<details>
<summary>Evaluation datasets (Click to expand) </summary>
- Evaluation datasets, LMDB datasets can be downloaded from [BaiduNetdisk(passwd:1dbv)](https://pan.baidu.com/s/1RUg3Akwp7n8kZYJ55rU5LQ), [GoogleDrive](https://drive.google.com/file/d/1dTI0ipu14Q1uuK4s4z32DqbqF3dJPdkk/view?usp=sharing).
1. ICDAR 2013 (IC13)
2. ICDAR 2015 (IC15)
3. IIIT5K Words (IIIT)
4. Street View Text (SVT)
5. Street View Text-Perspective (SVTP)
6. CUTE80 (CUTE)
</details>
<details>
<summary>The structure of `data` directory (Click to expand) </summary>
- The structure of `data` directory is
```
data
β”œβ”€β”€ charset_36.txt
β”œβ”€β”€ evaluation
β”‚Β Β  β”œβ”€β”€ CUTE80
β”‚Β Β  β”œβ”€β”€ IC13_857
β”‚Β Β  β”œβ”€β”€ IC15_1811
β”‚Β Β  β”œβ”€β”€ IIIT5k_3000
β”‚Β Β  β”œβ”€β”€ SVT
β”‚Β Β  └── SVTP
β”œβ”€β”€ training
β”‚Β Β  β”œβ”€β”€ MJ
β”‚Β Β  β”‚Β Β  β”œβ”€β”€ MJ_test
β”‚Β Β  β”‚Β Β  β”œβ”€β”€ MJ_train
β”‚Β Β  β”‚Β Β  └── MJ_valid
β”‚Β Β  └── ST
β”œβ”€β”€ WikiText-103.csv
└── WikiText-103_eval_d1.csv
```
</details>
## Pretrained Models
Get the pretrained models from [GoogleDrive](https://drive.google.com/drive/folders/1C8NMI8Od8mQUMlsnkHNLkYj73kbAQ7Bl?usp=sharing). Performances of the pretrained models are summaried as follows:
|Model|IC13|SVT|IIIT|IC15|SVTP|CUTE|AVG|
|-|-|-|-|-|-|-|-|
|IterNet|97.9|95.1|96.9|87.7|90.9|91.3|93.8|
## Training
1. Pre-train vision model
```
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python main.py --config=configs/pretrain_vm.yaml
```
2. Pre-train language model
```
CUDA_VISIBLE_DEVICES=0,1,2,3 python main.py --config=configs/pretrain_language_model.yaml
```
3. Train IterNet
```
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python main.py --config=configs/train_iternet.yaml
```
Note:
- You can set the `checkpoint` path for vision model (vm) and language model separately for specific pretrained model, or set to `None` to train from scratch
## Evaluation
```
CUDA_VISIBLE_DEVICES=0 python main.py --config=configs/train_iternet.yaml --phase test --image_only
```
Additional flags:
- `--checkpoint /path/to/checkpoint` set the path of evaluation model
- `--test_root /path/to/dataset` set the path of evaluation dataset
- `--model_eval [alignment|vision]` which sub-model to evaluate
- `--image_only` disable dumping visualization of attention masks
## Run Demo
[<a href="https://colab.research.google.com/drive/1XmZGJzFF95uafmARtJMudPLLKBO2eXLv?usp=sharing"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="google colab logo"></a>](https://colab.research.google.com/drive/1XmZGJzFF95uafmARtJMudPLLKBO2eXLv?usp=sharing)
```
python demo.py --config=configs/train_iternet.yaml --input=figures/demo
```
Additional flags:
- `--config /path/to/config` set the path of configuration file
- `--input /path/to/image-directory` set the path of image directory or wildcard path, e.g, `--input='figs/test/*.png'`
- `--checkpoint /path/to/checkpoint` set the path of trained model
- `--cuda [-1|0|1|2|3...]` set the cuda id, by default -1 is set and stands for cpu
- `--model_eval [alignment|vision]` which sub-model to use
- `--image_only` disable dumping visualization of attention masks
## Citation
If you find our method useful for your reserach, please cite
```bash
@article{chu2022itervm,
title={IterVM: Iterative Vision Modeling Module for Scene Text Recognition},
author={Chu, Xiaojie and Wang, Yongtao},
journal={arXiv preprint arXiv:2204.02630},
year={2022}
}
```
## License
The project is only free for academic research purposes, but needs authorization for commerce. For commerce permission, please contact [email protected].
## Acknowledgements
This project is based on [ABINet](https://github.com/FangShancheng/ABINet.git).
Thanks for their great works.