Spaces:
Sleeping
Sleeping
pipeline_tag: sentence-similarity | |
tags: | |
- sentence-transformers | |
- feature-extraction | |
- sentence-similarity | |
# {MODEL_NAME} | |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 153 dimensional dense vector space and can be used for tasks like clustering or semantic search. | |
<!--- Describe your model here --> | |
## Usage (Sentence-Transformers) | |
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: | |
``` | |
pip install -U sentence-transformers | |
``` | |
Then you can use the model like this: | |
```python | |
from sentence_transformers import SentenceTransformer | |
sentences = ["This is an example sentence", "Each sentence is converted"] | |
model = SentenceTransformer('{MODEL_NAME}') | |
embeddings = model.encode(sentences) | |
print(embeddings) | |
``` | |
## Evaluation Results | |
<!--- Describe how your model was evaluated --> | |
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) | |
## Training | |
The model was trained with the parameters: | |
**DataLoader**: | |
`torch.utils.data.dataloader.DataLoader` of length 400 with parameters: | |
``` | |
{'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} | |
``` | |
**Loss**: | |
`sentence_transformers.losses.ContrastiveLoss.ContrastiveLoss` with parameters: | |
``` | |
{'distance_metric': 'SiameseDistanceMetric.EUCLIDEAN', 'margin': 2.0, 'size_average': True} | |
``` | |
Parameters of the fit()-Method: | |
``` | |
{ | |
"epochs": 10, | |
"evaluation_steps": 0, | |
"evaluator": "sentence_transformers.evaluation.BinaryClassificationEvaluator.BinaryClassificationEvaluator", | |
"loss_name": "ContrastiveLoss", | |
"max_grad_norm": 1, | |
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>", | |
"optimizer_params": { | |
"lr": 0.001 | |
}, | |
"scheduler": "WarmupLinear", | |
"steps_per_epoch": null, | |
"tester": "sentence_transformers.evaluation.BinaryClassificationEvaluator.BinaryClassificationEvaluator", | |
"warmup_steps": 10000, | |
"weight_decay": 0.1, | |
"zero_shot_tester": "sentence_transformers.evaluation.BinaryClassificationEvaluator.BinaryClassificationEvaluator" | |
} | |
``` | |
## Full Model Architecture | |
``` | |
SentenceTransformer( | |
(0): Transformer({'max_seq_length': 1280, 'do_lower_case': False}) with Transformer model: RobertaModel | |
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': True, 'pooling_mode_global_max': False, 'pooling_mode_global_avg': False, 'pooling_mode_attention': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False}) | |
(2): Dense({'in_features': 768, 'out_features': 153, 'bias': True, 'activation_function': 'torch.nn.modules.activation.ReLU'}) | |
(3): Dropout( | |
(dropout_layer): Dropout(p=0.1, inplace=False) | |
) | |
) | |
``` | |
## Citing & Authors | |
<!--- Describe where people can find more information --> |