Spaces:
Running
Running
import csv | |
import re | |
import pandas as pd | |
import pickle | |
import sqlite3 | |
import gradio as gr | |
import os | |
from qatch.connectors.sqlite_connector import SqliteConnector | |
from qatch.evaluate_dataset.metrics_evaluators import CellPrecision, CellRecall, ExecutionAccuracy, TupleCardinality, TupleConstraint, TupleOrder, ValidEfficiencyScore | |
import qatch.evaluate_dataset.orchestrator_evaluator as eva | |
import utils_get_db_tables_info | |
#import tiktoken | |
from transformers import AutoTokenizer | |
def extract_tables(file_path): | |
conn = sqlite3.connect(file_path) | |
cursor = conn.cursor() | |
cursor.execute("SELECT name FROM sqlite_master WHERE type='table';") | |
tabelle = cursor.fetchall() | |
tabelle = [tabella for tabella in tabelle if tabella[0] != 'sqlite_sequence'] | |
return tabelle | |
def extract_dataframes(file_path): | |
conn = sqlite3.connect(file_path) | |
tabelle = extract_tables(file_path) | |
dfs = {} | |
for tabella in tabelle: | |
nome_tabella = tabella[0] | |
df = pd.read_sql_query(f"SELECT * FROM {nome_tabella}", conn) | |
dfs[nome_tabella] = df | |
conn.close() | |
return dfs | |
def carica_sqlite(file_path, db_id): | |
data_output = {'data_frames': extract_dataframes(file_path),'db': SqliteConnector(relative_db_path=file_path, db_name=db_id)} | |
return data_output | |
# Funzione per leggere un file CSV | |
def load_csv(file): | |
df = pd.read_csv(file) | |
return df | |
# Funzione per leggere un file Excel | |
def carica_excel(file): | |
xls = pd.ExcelFile(file) | |
dfs = {} | |
for sheet_name in xls.sheet_names: | |
dfs[sheet_name] = xls.parse(sheet_name) | |
return dfs | |
def load_data(data_path : str, db_name : str): | |
data_output = {'data_frames': {} ,'db': None} | |
table_name = os.path.splitext(os.path.basename(data_path))[0] | |
if data_path.endswith(".sqlite") : | |
data_output = carica_sqlite(data_path, db_name) | |
elif data_path.endswith(".csv"): | |
data_output['data_frames'] = {f"{table_name}_table" : load_csv(data_path)} | |
elif data_path.endswith(".xlsx"): | |
data_output['data_frames'] = carica_excel(data_path) | |
else: | |
raise gr.Error("Formato file non supportato. Carica un file SQLite, CSV o Excel.") | |
return data_output | |
def read_api(api_key_path): | |
with open(api_key_path, "r", encoding="utf-8") as file: | |
api_key = file.read() | |
return api_key | |
def read_models_csv(file_path): | |
# Reads a CSV file and returns a list of dictionaries | |
models = [] # Change {} to [] | |
with open(file_path, mode="r", newline="") as file: | |
reader = csv.DictReader(file) | |
for row in reader: | |
row["price"] = float(row["price"]) # Convert price to float | |
models.append(row) # Append to the list | |
return models | |
def csv_to_dict(file_path): | |
with open(file_path, mode='r', encoding='utf-8') as file: | |
reader = csv.DictReader(file) | |
data = [] | |
for row in reader: | |
if "price" in row: | |
row["price"] = float(row["price"]) | |
data.append(row) | |
return data | |
def increment_filename(filename): | |
base, ext = os.path.splitext(filename) | |
numbers = re.findall(r'\d+', base) | |
if numbers: | |
max_num = max(map(int, numbers)) + 1 | |
new_base = re.sub(r'(\d+)', lambda m: str(max_num) if int(m.group(1)) == max(map(int, numbers)) else m.group(1), base) | |
else: | |
new_base = base + '1' | |
return new_base + ext | |
def prepare_prompt(prompt, question, schema, samples): | |
prompt = prompt.replace("{db_schema}", schema).replace("{question}", question) | |
prompt += f" Some instances: {samples}" | |
return prompt | |
def generate_some_samples(file_path, tbl_name): | |
conn = sqlite3.connect(file_path) | |
samples = [] | |
query = f"SELECT * FROM {tbl_name} LIMIT 3" | |
try: | |
sample_data = pd.read_sql_query(query, conn) | |
samples.append(sample_data.to_dict(orient="records")) | |
#samples.append(str(sample_data)) | |
except Exception as e: | |
samples.append(f"Error: {e}") | |
return samples | |
def load_tables_dict_from_pkl(file_path): | |
with open(file_path, 'rb') as f: | |
return pickle.load(f) | |
def extract_tables_dict(pnp_path): | |
return load_tables_dict_from_pkl('tables_dict_beaver.pkl') | |
tables_dict = {} | |
with open(pnp_path, mode='r', encoding='utf-8') as file: | |
reader = csv.DictReader(file) | |
tbl_db_pairs = set() # Use a set to avoid duplicates | |
for row in reader: | |
tbl_name = row.get("tbl_name") | |
db_path = row.get("db_path") | |
if tbl_name and db_path: | |
tbl_db_pairs.add((tbl_name, db_path)) # Add the pair to the set | |
for tbl_name, db_path in list(tbl_db_pairs): | |
if tbl_name and db_path: | |
connector = sqlite3.connect(db_path) | |
query = f"SELECT * FROM {tbl_name} LIMIT 5" | |
try: | |
df = pd.read_sql_query(query, connector) | |
tables_dict[tbl_name] = df | |
except Exception as e: | |
tables_dict[tbl_name] = pd.DataFrame({"Error": [str(e)]}) # DataFrame con messaggio di errore | |
#with open('tables_dict_beaver.pkl', 'wb') as f: | |
# pickle.dump(tables_dict, f) | |
return tables_dict | |
def extract_answer(df): | |
if "query" not in df.columns or "db_path" not in df.columns: | |
raise ValueError("The DataFrame must contain 'query' and 'data_path' columns.") | |
answers = [] | |
for _, row in df.iterrows(): | |
query = row["query"] | |
db_schema = row["db_schema"] | |
#db_path = row["db_path"] | |
try: | |
conn = utils_get_db_tables_info.create_db_temp(db_schema) | |
result = pd.read_sql_query(query, conn) | |
answer = result.values.tolist() # Convert the DataFrame to a list of lists | |
answers.append(answer) | |
conn.close() | |
except Exception as e: | |
answers.append(f"Error: {e}") | |
df["target_answer"] = answers | |
return df | |
evaluator = { | |
"cell_precision": CellPrecision(), | |
"cell_recall": CellRecall(), | |
"tuple_cardinality": TupleCardinality(), | |
"tuple_order": TupleOrder(), | |
"tuple_constraint": TupleConstraint(), | |
"execution_accuracy": ExecutionAccuracy(), | |
"valid_efficency_score": ValidEfficiencyScore() | |
} | |
def evaluate_answer(df): | |
for metric_name, metric in evaluator.items(): | |
results = [] | |
for _, row in df.iterrows(): | |
target = row["target_answer"] | |
predicted = row["predicted_answer"] | |
try: | |
predicted = eval(predicted) | |
except Exception as e: | |
result = 0 | |
else: | |
try: | |
result = metric.run_metric(target = target, prediction = predicted) | |
except Exception as e: | |
result = 0 | |
results.append(result) | |
df[metric_name] = results | |
return df | |
models = [ | |
"gpt-4o-mini", | |
"deepseek-ai/DeepSeek-R1-Distill-Llama-70B", | |
] | |
def crop_entries_per_token(entries_list, model, prompt: str | None = None): | |
#open_ai_models = ["gpt-3.5", "gpt-4o-mini"] | |
dimension = 2048 | |
#enties_string = [", ".join(map(str, entry)) for entry in entries_list] | |
if prompt: | |
entries_string = prompt.join(entries_list) | |
else: | |
entries_string = " ".join(entries_list) | |
#if model in ["deepseek-ai/DeepSeek-R1-Distill-Llama-70B" ,"gpt-4o-mini" ] : | |
#tokenizer = tiktoken.encoding_for_model("gpt-4o-mini") | |
tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "deepseek-ai/DeepSeek-R1-Distill-Llama-70B") | |
tokens = tokenizer.encode(entries_string) | |
number_of_tokens = len(tokens) | |
if number_of_tokens > dimension and len(entries_list) > 4: | |
entries_list = entries_list[:round(len(entries_list)/2)] | |
entries_list = crop_entries_per_token(entries_list, model) | |
return entries_list | |