File size: 8,183 Bytes
91a4436
a394efd
91a4436
c08d1fa
91a4436
 
 
aff05a7
afa581c
 
af2b1fd
afa581c
 
 
a394efd
91a4436
 
 
 
 
a394efd
 
 
 
 
91a4436
 
 
 
 
 
a394efd
 
 
afa581c
91a4436
 
 
a394efd
91a4436
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aff05a7
91a4436
a394efd
91a4436
 
 
 
 
 
 
 
 
 
 
 
 
 
32b6873
 
 
 
 
91a4436
 
 
 
 
 
 
 
 
 
a394efd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41606a6
 
a394efd
 
41606a6
 
a394efd
 
 
41606a6
 
 
a394efd
 
 
32b6873
9aa07eb
c08d1fa
 
afa581c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af2b1fd
 
 
 
 
 
 
 
afa581c
af2b1fd
afa581c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c15f38c
afa581c
c15f38c
 
6a3a524
 
 
 
afa581c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import csv
import re
import pandas as pd
import pickle
import sqlite3
import gradio as gr
import os
from qatch.connectors.sqlite_connector import SqliteConnector
from qatch.evaluate_dataset.metrics_evaluators import CellPrecision, CellRecall, ExecutionAccuracy, TupleCardinality, TupleConstraint, TupleOrder, ValidEfficiencyScore
import qatch.evaluate_dataset.orchestrator_evaluator as eva
import utils_get_db_tables_info
#import tiktoken
from transformers import AutoTokenizer

def extract_tables(file_path):
    conn = sqlite3.connect(file_path)
    cursor = conn.cursor()
    cursor.execute("SELECT name FROM sqlite_master WHERE type='table';")
    tabelle = cursor.fetchall()
    tabelle = [tabella for tabella in tabelle if tabella[0] != 'sqlite_sequence']
    return tabelle

def extract_dataframes(file_path):
    conn = sqlite3.connect(file_path)
    tabelle = extract_tables(file_path) 
    dfs = {}
    for tabella in tabelle:
        nome_tabella = tabella[0]
        df = pd.read_sql_query(f"SELECT * FROM {nome_tabella}", conn)
        dfs[nome_tabella] = df
    conn.close()
    return dfs

def carica_sqlite(file_path, db_id):
    data_output = {'data_frames': extract_dataframes(file_path),'db': SqliteConnector(relative_db_path=file_path, db_name=db_id)}
    return data_output

# Funzione per leggere un file CSV
def load_csv(file):
    df = pd.read_csv(file)
    return df

# Funzione per leggere un file Excel
def carica_excel(file):
    xls = pd.ExcelFile(file)
    dfs = {}
    for sheet_name in xls.sheet_names:
        dfs[sheet_name] = xls.parse(sheet_name)
    return dfs

def load_data(data_path : str, db_name : str):
    data_output = {'data_frames': {} ,'db': None}
    table_name = os.path.splitext(os.path.basename(data_path))[0]
    if data_path.endswith(".sqlite") :
        data_output = carica_sqlite(data_path, db_name)
    elif data_path.endswith(".csv"):
        data_output['data_frames'] = {f"{table_name}_table" : load_csv(data_path)}
    elif data_path.endswith(".xlsx"):
        data_output['data_frames'] = carica_excel(data_path)
    else:
        raise gr.Error("Formato file non supportato. Carica un file SQLite, CSV o Excel.")    
    return data_output

def read_api(api_key_path):
    with open(api_key_path, "r", encoding="utf-8") as file:
        api_key = file.read()
        return api_key

def read_models_csv(file_path):
    # Reads a CSV file and returns a list of dictionaries
    models = []  # Change {} to []
    with open(file_path, mode="r", newline="") as file:
        reader = csv.DictReader(file)
        for row in reader:
            row["price"] = float(row["price"])  # Convert price to float
            models.append(row)  # Append to the list
    return models

def csv_to_dict(file_path):
    with open(file_path, mode='r', encoding='utf-8') as file:
        reader = csv.DictReader(file)
        data = []
        for row in reader:
            if "price" in row:
                row["price"] = float(row["price"])
            data.append(row)
    return data


def increment_filename(filename):
    base, ext = os.path.splitext(filename)
    numbers = re.findall(r'\d+', base)
    
    if numbers:
        max_num = max(map(int, numbers)) + 1
        new_base = re.sub(r'(\d+)', lambda m: str(max_num) if int(m.group(1)) == max(map(int, numbers)) else m.group(1), base)
    else:
        new_base = base + '1'
    
    return new_base + ext

def prepare_prompt(prompt, question, schema, samples):
    prompt = prompt.replace("{db_schema}", schema).replace("{question}", question)
    prompt += f" Some instances: {samples}"
    return prompt

def generate_some_samples(file_path, tbl_name):
    conn = sqlite3.connect(file_path)
    samples = []
    query = f"SELECT * FROM {tbl_name} LIMIT 3"
    try:
        sample_data = pd.read_sql_query(query, conn)
        samples.append(sample_data.to_dict(orient="records"))
        #samples.append(str(sample_data))
    except Exception as e:
        samples.append(f"Error: {e}")
    return samples

def load_tables_dict_from_pkl(file_path):
    with open(file_path, 'rb') as f:
        return pickle.load(f)

def extract_tables_dict(pnp_path):
    return load_tables_dict_from_pkl('tables_dict_beaver.pkl')
    tables_dict = {}
    with open(pnp_path, mode='r', encoding='utf-8') as file:
        reader = csv.DictReader(file)
        tbl_db_pairs = set()  # Use a set to avoid duplicates
        for row in reader:
            tbl_name = row.get("tbl_name")
            db_path = row.get("db_path")
            if tbl_name and db_path:
                tbl_db_pairs.add((tbl_name, db_path))  # Add the pair to the set
    for tbl_name, db_path in list(tbl_db_pairs):
            if tbl_name and db_path:
                connector = sqlite3.connect(db_path)
                query = f"SELECT * FROM {tbl_name} LIMIT 5"
                try:
                    df = pd.read_sql_query(query, connector)                    
                    tables_dict[tbl_name] = df
                except Exception as e:
                    tables_dict[tbl_name] = pd.DataFrame({"Error": [str(e)]})  # DataFrame con messaggio di errore
    #with open('tables_dict_beaver.pkl', 'wb') as f:
    #    pickle.dump(tables_dict, f)
    return tables_dict


def extract_answer(df):
    if "query" not in df.columns or "db_path" not in df.columns:
        raise ValueError("The DataFrame must contain 'query' and 'data_path' columns.")
    
    answers = []
    for _, row in df.iterrows():
        query = row["query"]
        db_schema = row["db_schema"]
        #db_path = row["db_path"]
        try: 
            conn = utils_get_db_tables_info.create_db_temp(db_schema)

            result = pd.read_sql_query(query, conn)
            answer = result.values.tolist()  # Convert the DataFrame to a list of lists

            answers.append(answer)
            conn.close()
        except Exception as e:
            answers.append(f"Error: {e}")
    
    df["target_answer"] = answers
    return df

evaluator = {
    "cell_precision": CellPrecision(),
    "cell_recall": CellRecall(),
    "tuple_cardinality": TupleCardinality(),
    "tuple_order": TupleOrder(),
    "tuple_constraint": TupleConstraint(),
    "execution_accuracy": ExecutionAccuracy(),
    "valid_efficency_score": ValidEfficiencyScore()
}

def evaluate_answer(df):
    for metric_name, metric in evaluator.items():
        results = []
        for _, row in df.iterrows():
            target = row["target_answer"]
            predicted = row["predicted_answer"]
            try:
                predicted = eval(predicted)
            except Exception as e:
                result = 0
            else:
                try:
                    result = metric.run_metric(target = target, prediction = predicted)
                except Exception as e:
                    result = 0
            results.append(result)
        df[metric_name] = results
    return df

models = [
          "gpt-4o-mini",
          "deepseek-ai/DeepSeek-R1-Distill-Llama-70B",
          ]

def crop_entries_per_token(entries_list, model, prompt: str | None = None):
    #open_ai_models = ["gpt-3.5", "gpt-4o-mini"] 
    dimension = 2048
    #enties_string = [", ".join(map(str, entry)) for entry in entries_list]
    if prompt:
        entries_string = prompt.join(entries_list)
    else:
        entries_string = " ".join(entries_list)
    #if model in ["deepseek-ai/DeepSeek-R1-Distill-Llama-70B" ,"gpt-4o-mini" ] :
    #tokenizer = tiktoken.encoding_for_model("gpt-4o-mini")
    tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "deepseek-ai/DeepSeek-R1-Distill-Llama-70B")
    
    tokens = tokenizer.encode(entries_string)
    number_of_tokens = len(tokens)
    if number_of_tokens > dimension and len(entries_list) > 4:
        entries_list = entries_list[:round(len(entries_list)/2)]
        entries_list = crop_entries_per_token(entries_list, model)
    return entries_list