|
--- |
|
title: CoNR |
|
emoji: ⚡ |
|
colorFrom: gray |
|
colorTo: red |
|
sdk: gradio |
|
sdk_version: 3.1.4 |
|
app_file: app.py |
|
pinned: false |
|
license: mit |
|
duplicated_from: nev/CoNR |
|
--- |
|
|
|
[English](https://github.com/megvii-research/CoNR/blob/main/README.md) | [中文](https://github.com/megvii-research/CoNR/blob/main/README_chinese.md) |
|
# Collaborative Neural Rendering using Anime Character Sheets |
|
|
|
|
|
## [Homepage](https://conr.ml) | Colab [English](https://colab.research.google.com/github/megvii-research/CoNR/blob/main/notebooks/conr.ipynb)/[中文](https://colab.research.google.com/github/megvii-research/CoNR/blob/main/notebooks/conr_chinese.ipynb) | [arXiv](https://arxiv.org/abs/2207.05378) |
|
|
|
 |
|
|
|
## Introduction |
|
|
|
This project is the official implement of [Collaborative Neural Rendering using Anime Character Sheets](https://arxiv.org/abs/2207.05378), which aims to genarate vivid dancing videos from hand-drawn anime character sheets(ACS). Watch more demos in our [HomePage](https://conr.ml). |
|
|
|
Contributors: [@transpchan](https://github.com/transpchan/), [@P2Oileen](https://github.com/P2Oileen), [@hzwer](https://github.com/hzwer) |
|
|
|
## Usage |
|
|
|
#### Prerequisites |
|
|
|
* NVIDIA GPU + CUDA + CUDNN |
|
* Python 3.6 |
|
|
|
#### Installation |
|
|
|
* Clone this repository |
|
|
|
```bash |
|
git clone https://github.com/megvii-research/CoNR |
|
``` |
|
|
|
* Dependencies |
|
|
|
To install all the dependencies, please run the following commands. |
|
|
|
```bash |
|
cd CoNR |
|
pip install -r requirements.txt |
|
``` |
|
|
|
* Download Weights |
|
Download weights from Google Drive. Alternatively, you can download from [Baidu Netdisk](https://pan.baidu.com/s/1U11iIk-DiJodgCveSzB6ig?pwd=RDxc) (password:RDxc). |
|
|
|
``` |
|
mkdir weights && cd weights |
|
gdown https://drive.google.com/uc?id=1M1LEpx70tJ72AIV2TQKr6NE_7mJ7tLYx |
|
gdown https://drive.google.com/uc?id=1YvZy3NHkJ6gC3pq_j8agcbEJymHCwJy0 |
|
gdown https://drive.google.com/uc?id=1AOWZxBvTo9nUf2_9Y7Xe27ZFQuPrnx9i |
|
gdown https://drive.google.com/uc?id=19jM1-GcqgGoE1bjmQycQw_vqD9C5e-Jm |
|
``` |
|
|
|
#### Prepare Inputs |
|
We provide two Ultra-Dense Pose sequences for two characters. You can generate more UDPs via 3D models and motions refers to [our paper](https://arxiv.org/abs/2207.05378). |
|
[Baidu Netdisk](https://pan.baidu.com/s/1hWvz4iQXnVTaTSb6vu1NBg?pwd=RDxc) (password:RDxc) |
|
|
|
``` |
|
# for short hair girl |
|
gdown https://drive.google.com/uc?id=11HMSaEkN__QiAZSnCuaM6GI143xo62KO |
|
unzip short_hair.zip |
|
mv short_hair/ poses/ |
|
|
|
# for double ponytail girl |
|
gdown https://drive.google.com/uc?id=1WNnGVuU0ZLyEn04HzRKzITXqib1wwM4Q |
|
unzip double_ponytail.zip |
|
mv double_ponytail/ poses/ |
|
``` |
|
|
|
We provide sample inputs of anime character sheets. You can also draw more by yourself. |
|
Character sheets need to be cut out from the background and in png format. |
|
[Baidu Netdisk](https://pan.baidu.com/s/1shpP90GOMeHke7MuT0-Txw?pwd=RDxc) (password:RDxc) |
|
|
|
``` |
|
# for short hair girl |
|
gdown https://drive.google.com/uc?id=1r-3hUlENSWj81ve2IUPkRKNB81o9WrwT |
|
unzip short_hair_images.zip |
|
mv short_hair_images/ character_sheet/ |
|
|
|
# for double ponytail girl |
|
gdown https://drive.google.com/uc?id=1XMrJf9Lk_dWgXyTJhbEK2LZIXL9G3MWc |
|
unzip double_ponytail_images.zip |
|
mv double_ponytail_images/ character_sheet/ |
|
``` |
|
|
|
#### RUN! |
|
* with web UI (powered by [Streamlit](https://streamlit.io/)) |
|
|
|
``` |
|
streamlit run streamlit.py --server.port=8501 |
|
``` |
|
then open your browser and visit `localhost:8501`, follow the instructions to genarate video. |
|
|
|
* via terminal |
|
|
|
``` |
|
mkdir {dir_to_save_result} |
|
|
|
python -m torch.distributed.launch \ |
|
--nproc_per_node=1 train.py --mode=test \ |
|
--world_size=1 --dataloaders=2 \ |
|
--test_input_poses_images={dir_to_poses} \ |
|
--test_input_person_images={dir_to_character_sheet} \ |
|
--test_output_dir={dir_to_save_result} \ |
|
--test_checkpoint_dir={dir_to_weights} |
|
|
|
ffmpeg -r 30 -y -i {dir_to_save_result}/%d.png -r 30 -c:v libx264 output.mp4 -r 30 |
|
``` |
|
|
|
## Citation |
|
```bibtex |
|
@article{lin2022conr, |
|
title={Collaborative Neural Rendering using Anime Character Sheets}, |
|
author={Lin, Zuzeng and Huang, Ailin and Huang, Zhewei and Hu, Chen and Zhou, Shuchang}, |
|
journal={arXiv preprint arXiv:2207.05378}, |
|
year={2022} |
|
} |
|
``` |
|
|