Spaces:
Build error
Build error
| # Copyright (c) Facebook, Inc. and its affiliates. | |
| import atexit | |
| import bisect | |
| import gc | |
| import json | |
| import multiprocessing as mp | |
| import time | |
| from collections import deque | |
| import cv2 | |
| import numpy as np | |
| import torch | |
| from ape.engine.defaults import DefaultPredictor | |
| from detectron2.data import MetadataCatalog | |
| from detectron2.utils.video_visualizer import VideoVisualizer | |
| from detectron2.utils.visualizer import ColorMode, Visualizer | |
| def filter_instances(instances, metadata): | |
| # return instances | |
| keep = [] | |
| keep_classes = [] | |
| sorted_idxs = np.argsort(-instances.scores) | |
| instances = instances[sorted_idxs] | |
| for i in range(len(instances)): | |
| instance = instances[i] | |
| pred_class = instance.pred_classes | |
| if pred_class >= len(metadata.thing_classes): | |
| continue | |
| keep.append(i) | |
| keep_classes.append(pred_class) | |
| return instances[keep] | |
| def cuda_grabcut(img, masks, iter=5, gamma=50, iou_threshold=0.75): | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| try: | |
| import grabcut | |
| except Exception as e: | |
| print("*" * 60) | |
| print("fail to import grabCut: ", e) | |
| print("*" * 60) | |
| return masks | |
| GC = grabcut.GrabCut(iter) | |
| img = cv2.cvtColor(img, cv2.COLOR_BGR2BGRA) | |
| tic_0 = time.time() | |
| for i in range(len(masks)): | |
| mask = masks[i] | |
| if mask.sum() > 10 * 10: | |
| pass | |
| else: | |
| continue | |
| # ---------------------------------------------------------------- | |
| fourmap = np.empty_like(mask, dtype=np.uint8) | |
| fourmap[:, :] = 64 | |
| fourmap[mask == 0] = 64 | |
| fourmap[mask == 1] = 128 | |
| # Compute segmentation | |
| tic = time.time() | |
| seg = GC.estimateSegmentationFromFourmap(img, fourmap, gamma) | |
| toc = time.time() | |
| print("Time elapsed in GrabCut segmentation: " + str(toc - tic)) | |
| # ---------------------------------------------------------------- | |
| seg = torch.tensor(seg, dtype=torch.bool) | |
| iou = (mask & seg).sum() / (mask | seg).sum() | |
| if iou > iou_threshold: | |
| masks[i] = seg | |
| if toc - tic_0 > 10: | |
| break | |
| return masks | |
| def opencv_grabcut(img, masks, iter=5): | |
| for i in range(len(masks)): | |
| mask = masks[i] | |
| # ---------------------------------------------------------------- | |
| fourmap = np.empty_like(mask, dtype=np.uint8) | |
| fourmap[:, :] = cv2.GC_PR_BGD | |
| # fourmap[mask == 0] = cv2.GC_BGD | |
| fourmap[mask == 0] = cv2.GC_PR_BGD | |
| fourmap[mask == 1] = cv2.GC_PR_FGD | |
| # fourmap[mask == 1] = cv2.GC_FGD | |
| # Create GrabCut algo | |
| bgd_model = np.zeros((1, 65), np.float64) | |
| fgd_model = np.zeros((1, 65), np.float64) | |
| seg = np.zeros_like(fourmap, dtype=np.uint8) | |
| # Compute segmentation | |
| tic = time.time() | |
| seg, bgd_model, fgd_model = cv2.grabCut( | |
| img, fourmap, None, bgd_model, fgd_model, iter, cv2.GC_INIT_WITH_MASK | |
| ) | |
| toc = time.time() | |
| print("Time elapsed in GrabCut segmentation: " + str(toc - tic)) | |
| seg = np.where((seg == 2) | (seg == 0), 0, 1).astype("bool") | |
| # ---------------------------------------------------------------- | |
| seg = torch.tensor(seg, dtype=torch.bool) | |
| iou = (mask & seg).sum() / (mask | seg).sum() | |
| if iou > 0.75: | |
| masks[i] = seg | |
| if i > 10: | |
| break | |
| return masks | |
| class VisualizationDemo(object): | |
| def __init__(self, cfg, instance_mode=ColorMode.IMAGE, parallel=False, args=None): | |
| """ | |
| Args: | |
| cfg (CfgNode): | |
| instance_mode (ColorMode): | |
| parallel (bool): whether to run the model in different processes from visualization. | |
| Useful since the visualization logic can be slow. | |
| """ | |
| self.metadata = MetadataCatalog.get( | |
| "__unused_" + "_".join([d for d in cfg.dataloader.train.dataset.names]) | |
| ) | |
| self.metadata.thing_classes = [ | |
| c | |
| for d in cfg.dataloader.train.dataset.names | |
| for c in MetadataCatalog.get(d).get("thing_classes", default=[]) | |
| + MetadataCatalog.get(d).get("stuff_classes", default=["thing"])[1:] | |
| ] | |
| self.metadata.stuff_classes = [ | |
| c | |
| for d in cfg.dataloader.train.dataset.names | |
| for c in MetadataCatalog.get(d).get("thing_classes", default=[]) | |
| + MetadataCatalog.get(d).get("stuff_classes", default=["thing"])[1:] | |
| ] | |
| # self.metadata = MetadataCatalog.get( | |
| # "__unused_ape_" + "_".join([d for d in cfg.dataloader.train.dataset.names]) | |
| # ) | |
| # self.metadata.thing_classes = [ | |
| # c | |
| # for d in ["coco_2017_train_panoptic_separated"] | |
| # for c in MetadataCatalog.get(d).get("thing_classes", default=[]) | |
| # + MetadataCatalog.get(d).get("stuff_classes", default=["thing"])[1:] | |
| # ] | |
| # self.metadata.stuff_classes = [ | |
| # c | |
| # for d in ["coco_2017_train_panoptic_separated"] | |
| # for c in MetadataCatalog.get(d).get("thing_classes", default=[]) | |
| # + MetadataCatalog.get(d).get("stuff_classes", default=["thing"])[1:] | |
| # ] | |
| self.cpu_device = torch.device("cpu") | |
| self.instance_mode = instance_mode | |
| self.parallel = parallel | |
| if parallel: | |
| num_gpu = torch.cuda.device_count() | |
| self.predictor = AsyncPredictor(cfg, num_gpus=num_gpu) | |
| else: | |
| self.predictor = DefaultPredictor(cfg) | |
| print(args) | |
| def run_on_image( | |
| self, | |
| image, | |
| text_prompt=None, | |
| mask_prompt=None, | |
| with_box=True, | |
| with_mask=True, | |
| with_sseg=True, | |
| ): | |
| """ | |
| Args: | |
| image (np.ndarray): an image of shape (H, W, C) (in BGR order). | |
| This is the format used by OpenCV. | |
| Returns: | |
| predictions (dict): the output of the model. | |
| vis_output (VisImage): the visualized image output. | |
| """ | |
| if text_prompt: | |
| text_list = [x.strip() for x in text_prompt.split(",")] | |
| text_list = [x for x in text_list if len(x) > 0] | |
| metadata = MetadataCatalog.get("__unused_ape_" + text_prompt) | |
| metadata.thing_classes = text_list | |
| metadata.stuff_classes = text_list | |
| else: | |
| metadata = self.metadata | |
| vis_output = None | |
| predictions = self.predictor(image, text_prompt, mask_prompt) | |
| if "instances" in predictions: | |
| predictions["instances"] = filter_instances( | |
| predictions["instances"].to(self.cpu_device), metadata | |
| ) | |
| # Convert image from OpenCV BGR format to Matplotlib RGB format. | |
| image = image[:, :, ::-1] | |
| visualizer = Visualizer(image, metadata, instance_mode=self.instance_mode) | |
| vis_outputs = [] | |
| if "panoptic_seg" in predictions and with_mask and with_sseg: | |
| panoptic_seg, segments_info = predictions["panoptic_seg"] | |
| vis_output = visualizer.draw_panoptic_seg_predictions( | |
| panoptic_seg.to(self.cpu_device), segments_info | |
| ) | |
| else: | |
| if "sem_seg" in predictions and with_sseg: | |
| # vis_output = visualizer.draw_sem_seg( | |
| # predictions["sem_seg"].argmax(dim=0).to(self.cpu_device) | |
| # ) | |
| sem_seg = predictions["sem_seg"].to(self.cpu_device) | |
| # sem_seg = opencv_grabcut(image, sem_seg, iter=10) | |
| # sem_seg = cuda_grabcut(image, sem_seg > 0.5, iter=5, gamma=10, iou_threshold=0.1) | |
| sem_seg = torch.cat((sem_seg, torch.ones_like(sem_seg[0:1, ...]) * 0.1), dim=0) | |
| sem_seg = sem_seg.argmax(dim=0) | |
| vis_output = visualizer.draw_sem_seg(sem_seg) | |
| if "instances" in predictions and (with_box or with_mask): | |
| instances = predictions["instances"].to(self.cpu_device) | |
| if not with_box: | |
| instances.remove("pred_boxes") | |
| if not with_mask: | |
| instances.remove("pred_masks") | |
| if with_mask and False: | |
| # instances.pred_masks = opencv_grabcut(image, instances.pred_masks, iter=10) | |
| instances.pred_masks = cuda_grabcut( | |
| image, instances.pred_masks, iter=5, gamma=10, iou_threshold=0.75 | |
| ) | |
| vis_output = visualizer.draw_instance_predictions(predictions=instances) | |
| # for i in range(len(instances)): | |
| # visualizer = Visualizer(image, metadata, instance_mode=self.instance_mode) | |
| # vis_outputs.append(visualizer.draw_instance_predictions(predictions=instances[i])) | |
| elif "proposals" in predictions: | |
| visualizer = Visualizer(image, None, instance_mode=self.instance_mode) | |
| instances = predictions["proposals"].to(self.cpu_device) | |
| instances.pred_boxes = instances.proposal_boxes | |
| instances.scores = instances.objectness_logits | |
| vis_output = visualizer.draw_instance_predictions(predictions=instances) | |
| return predictions, vis_output, vis_outputs, metadata | |
| def _frame_from_video(self, video): | |
| while video.isOpened(): | |
| success, frame = video.read() | |
| if success: | |
| yield frame | |
| else: | |
| break | |
| def run_on_video(self, video): | |
| """ | |
| Visualizes predictions on frames of the input video. | |
| Args: | |
| video (cv2.VideoCapture): a :class:`VideoCapture` object, whose source can be | |
| either a webcam or a video file. | |
| Yields: | |
| ndarray: BGR visualizations of each video frame. | |
| """ | |
| video_visualizer = VideoVisualizer(self.metadata, self.instance_mode) | |
| def process_predictions(frame, predictions): | |
| frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | |
| if "panoptic_seg" in predictions and False: | |
| panoptic_seg, segments_info = predictions["panoptic_seg"] | |
| vis_frame = video_visualizer.draw_panoptic_seg_predictions( | |
| frame, panoptic_seg.to(self.cpu_device), segments_info | |
| ) | |
| elif "instances" in predictions and False: | |
| predictions = predictions["instances"].to(self.cpu_device) | |
| vis_frame = video_visualizer.draw_instance_predictions(frame, predictions) | |
| elif "sem_seg" in predictions and False: | |
| vis_frame = video_visualizer.draw_sem_seg( | |
| frame, predictions["sem_seg"].argmax(dim=0).to(self.cpu_device) | |
| ) | |
| if "sem_seg" in predictions: | |
| vis_frame = video_visualizer.draw_sem_seg( | |
| frame, predictions["sem_seg"].argmax(dim=0).to(self.cpu_device) | |
| ) | |
| frame = vis_frame.get_image() | |
| if "instances" in predictions: | |
| predictions = predictions["instances"].to(self.cpu_device) | |
| predictions = filter_instances(predictions, self.metadata) | |
| vis_frame = video_visualizer.draw_instance_predictions(frame, predictions) | |
| # Converts Matplotlib RGB format to OpenCV BGR format | |
| vis_frame = cv2.cvtColor(vis_frame.get_image(), cv2.COLOR_RGB2BGR) | |
| return vis_frame, predictions | |
| frame_gen = self._frame_from_video(video) | |
| if self.parallel: | |
| buffer_size = self.predictor.default_buffer_size | |
| frame_data = deque() | |
| for cnt, frame in enumerate(frame_gen): | |
| frame_data.append(frame) | |
| self.predictor.put(frame) | |
| if cnt >= buffer_size: | |
| frame = frame_data.popleft() | |
| predictions = self.predictor.get() | |
| yield process_predictions(frame, predictions) | |
| while len(frame_data): | |
| frame = frame_data.popleft() | |
| predictions = self.predictor.get() | |
| yield process_predictions(frame, predictions) | |
| else: | |
| for frame in frame_gen: | |
| yield process_predictions(frame, self.predictor(frame)) | |
| class AsyncPredictor: | |
| """ | |
| A predictor that runs the model asynchronously, possibly on >1 GPUs. | |
| Because rendering the visualization takes considerably amount of time, | |
| this helps improve throughput a little bit when rendering videos. | |
| """ | |
| class _StopToken: | |
| pass | |
| class _PredictWorker(mp.Process): | |
| def __init__(self, cfg, task_queue, result_queue): | |
| self.cfg = cfg | |
| self.task_queue = task_queue | |
| self.result_queue = result_queue | |
| super().__init__() | |
| def run(self): | |
| predictor = DefaultPredictor(self.cfg) | |
| while True: | |
| task = self.task_queue.get() | |
| if isinstance(task, AsyncPredictor._StopToken): | |
| break | |
| idx, data = task | |
| result = predictor(data) | |
| self.result_queue.put((idx, result)) | |
| def __init__(self, cfg, num_gpus: int = 1): | |
| """ | |
| Args: | |
| cfg (CfgNode): | |
| num_gpus (int): if 0, will run on CPU | |
| """ | |
| num_workers = max(num_gpus, 1) | |
| self.task_queue = mp.Queue(maxsize=num_workers * 3) | |
| self.result_queue = mp.Queue(maxsize=num_workers * 3) | |
| self.procs = [] | |
| for gpuid in range(max(num_gpus, 1)): | |
| cfg = cfg.clone() | |
| cfg.defrost() | |
| cfg.MODEL.DEVICE = "cuda:{}".format(gpuid) if num_gpus > 0 else "cpu" | |
| self.procs.append( | |
| AsyncPredictor._PredictWorker(cfg, self.task_queue, self.result_queue) | |
| ) | |
| self.put_idx = 0 | |
| self.get_idx = 0 | |
| self.result_rank = [] | |
| self.result_data = [] | |
| for p in self.procs: | |
| p.start() | |
| atexit.register(self.shutdown) | |
| def put(self, image): | |
| self.put_idx += 1 | |
| self.task_queue.put((self.put_idx, image)) | |
| def get(self): | |
| self.get_idx += 1 # the index needed for this request | |
| if len(self.result_rank) and self.result_rank[0] == self.get_idx: | |
| res = self.result_data[0] | |
| del self.result_data[0], self.result_rank[0] | |
| return res | |
| while True: | |
| # make sure the results are returned in the correct order | |
| idx, res = self.result_queue.get() | |
| if idx == self.get_idx: | |
| return res | |
| insert = bisect.bisect(self.result_rank, idx) | |
| self.result_rank.insert(insert, idx) | |
| self.result_data.insert(insert, res) | |
| def __len__(self): | |
| return self.put_idx - self.get_idx | |
| def __call__(self, image): | |
| self.put(image) | |
| return self.get() | |
| def shutdown(self): | |
| for _ in self.procs: | |
| self.task_queue.put(AsyncPredictor._StopToken()) | |
| def default_buffer_size(self): | |
| return len(self.procs) * 5 | |