Spaces:
Build error
Build error
Commit
·
feac658
0
Parent(s):
rebase
Browse files- .gitattributes +10 -0
- README.md +13 -0
- app.py +1032 -0
- demo_lazy.py +263 -0
- examples/013_438973263.jpg +3 -0
- examples/094_56726435.jpg +3 -0
- examples/199_3946193540.jpg +3 -0
- examples/MatrixRevolutionForZion.jpg +3 -0
- examples/Pisa.jpg +3 -0
- examples/SolvayConference1927.jpg +3 -0
- examples/Terminator3.jpg +3 -0
- examples/TheGreatWall.jpg +3 -0
- examples/Totoro01.png +3 -0
- examples/Transformers.webp +3 -0
- pre-requirements.txt +4 -0
- predictor_lazy.py +429 -0
- requirements.txt +11 -0
.gitattributes
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
examples/094_56726435.jpg filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
examples/199_3946193540.jpg filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
examples/SolvayConference1927.jpg filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
examples/TheGreatWall.jpg filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
examples/Totoro01.png filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
examples/Transformers.webp filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
examples/013_438973263.jpg filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
examples/Pisa.jpg filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
examples/Terminator3.jpg filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
examples/MatrixRevolutionForZion.jpg filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: APE
|
| 3 |
+
emoji: 🌍
|
| 4 |
+
colorFrom: blue
|
| 5 |
+
colorTo: indigo
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: 4.7.1
|
| 8 |
+
app_file: app.py
|
| 9 |
+
pinned: false
|
| 10 |
+
license: apache-2.0
|
| 11 |
+
---
|
| 12 |
+
|
| 13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
|
@@ -0,0 +1,1032 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gc
|
| 2 |
+
import multiprocessing as mp
|
| 3 |
+
import os
|
| 4 |
+
import shutil
|
| 5 |
+
import sys
|
| 6 |
+
import time
|
| 7 |
+
from os import path
|
| 8 |
+
|
| 9 |
+
import cv2
|
| 10 |
+
import torch
|
| 11 |
+
from huggingface_hub import hf_hub_download
|
| 12 |
+
from PIL import Image
|
| 13 |
+
|
| 14 |
+
import ape
|
| 15 |
+
import detectron2.data.transforms as T
|
| 16 |
+
import gradio as gr
|
| 17 |
+
from ape.model_zoo import get_config_file
|
| 18 |
+
from demo_lazy import get_parser, setup_cfg
|
| 19 |
+
from detectron2.config import CfgNode
|
| 20 |
+
from detectron2.data.detection_utils import read_image
|
| 21 |
+
from detectron2.evaluation.coco_evaluation import instances_to_coco_json
|
| 22 |
+
from detectron2.utils.logger import setup_logger
|
| 23 |
+
from predictor_lazy import VisualizationDemo
|
| 24 |
+
|
| 25 |
+
this_dir = path.dirname(path.abspath(__file__))
|
| 26 |
+
|
| 27 |
+
# os.system("git clone https://github.com/shenyunhang/APE.git")
|
| 28 |
+
# os.system("python3.10 -m pip install -e APE/")
|
| 29 |
+
|
| 30 |
+
example_list = [
|
| 31 |
+
[
|
| 32 |
+
this_dir + "/examples/Totoro01.png",
|
| 33 |
+
# "Sky, Water, Tree, The biggest Chinchilla, The older girl wearing skirt on branch, Grass",
|
| 34 |
+
"Girl with hat",
|
| 35 |
+
# 0.05,
|
| 36 |
+
0.25,
|
| 37 |
+
["object detection", "instance segmentation"],
|
| 38 |
+
],
|
| 39 |
+
[
|
| 40 |
+
this_dir + "/examples/Totoro01.png",
|
| 41 |
+
"Sky, Water, Tree, Chinchilla, Grass, Girl",
|
| 42 |
+
0.15,
|
| 43 |
+
["semantic segmentation"],
|
| 44 |
+
],
|
| 45 |
+
[
|
| 46 |
+
this_dir + "/examples/199_3946193540.jpg",
|
| 47 |
+
"chess piece of horse head",
|
| 48 |
+
0.30,
|
| 49 |
+
["object detection", "instance segmentation"],
|
| 50 |
+
],
|
| 51 |
+
[
|
| 52 |
+
this_dir + "/examples/TheGreatWall.jpg",
|
| 53 |
+
"The Great Wall",
|
| 54 |
+
0.1,
|
| 55 |
+
["semantic segmentation"],
|
| 56 |
+
],
|
| 57 |
+
[
|
| 58 |
+
this_dir + "/examples/Pisa.jpg",
|
| 59 |
+
"Pisa",
|
| 60 |
+
0.01,
|
| 61 |
+
["object detection", "instance segmentation"],
|
| 62 |
+
],
|
| 63 |
+
[
|
| 64 |
+
this_dir + "/examples/SolvayConference1927.jpg",
|
| 65 |
+
# "Albert Einstein, Madame Curie",
|
| 66 |
+
"Madame Curie",
|
| 67 |
+
# 0.01,
|
| 68 |
+
0.03,
|
| 69 |
+
["object detection", "instance segmentation"],
|
| 70 |
+
],
|
| 71 |
+
[
|
| 72 |
+
this_dir + "/examples/Transformers.webp",
|
| 73 |
+
"Optimus Prime",
|
| 74 |
+
0.11,
|
| 75 |
+
["object detection", "instance segmentation"],
|
| 76 |
+
],
|
| 77 |
+
[
|
| 78 |
+
this_dir + "/examples/Terminator3.jpg",
|
| 79 |
+
"Humanoid Robot",
|
| 80 |
+
0.10,
|
| 81 |
+
["object detection", "instance segmentation"],
|
| 82 |
+
],
|
| 83 |
+
[
|
| 84 |
+
this_dir + "/examples/MatrixRevolutionForZion.jpg",
|
| 85 |
+
"""machine killer with gun in fighting,
|
| 86 |
+
donut with colored granules on the surface,
|
| 87 |
+
railings being crossed by horses,
|
| 88 |
+
a horse running or jumping,
|
| 89 |
+
equestrian rider's helmet,
|
| 90 |
+
outdoor dog led by rope,
|
| 91 |
+
a dog being touched,
|
| 92 |
+
clothed dog,
|
| 93 |
+
basketball in hand,
|
| 94 |
+
a basketball player with both feet off the ground,
|
| 95 |
+
player with basketball in the hand,
|
| 96 |
+
spoon on the plate,
|
| 97 |
+
coffee cup with coffee,
|
| 98 |
+
the nearest dessert to the coffee cup,
|
| 99 |
+
the bartender who is mixing wine,
|
| 100 |
+
a bartender in a suit,
|
| 101 |
+
wine glass with wine,
|
| 102 |
+
a person in aprons,
|
| 103 |
+
pot with food,
|
| 104 |
+
a knife being used to cut vegetables,
|
| 105 |
+
striped sofa in the room,
|
| 106 |
+
a sofa with pillows on it in the room,
|
| 107 |
+
lights on in the room,
|
| 108 |
+
an indoor lying pet,
|
| 109 |
+
a cat on the sofa,
|
| 110 |
+
one pet looking directly at the camera indoors,
|
| 111 |
+
a bed with patterns in the room,
|
| 112 |
+
the lamp on the table beside the bed,
|
| 113 |
+
pillow placed at the head of the bed,
|
| 114 |
+
a blackboard full of words in the classroom,
|
| 115 |
+
child sitting at desks in the classroom,
|
| 116 |
+
a person standing in front of bookshelves in the library,
|
| 117 |
+
the table someone is using in the library,
|
| 118 |
+
a person who touches books in the library,
|
| 119 |
+
a person standing in front of the cake counter,
|
| 120 |
+
a square plate full of cakes,
|
| 121 |
+
a cake decorated with cream,
|
| 122 |
+
hot dog with vegetables,
|
| 123 |
+
hot dog with sauce on the surface,
|
| 124 |
+
red sausage,
|
| 125 |
+
flowerpot with flowers potted inside,
|
| 126 |
+
monochrome flowerpot,
|
| 127 |
+
a flowerpot filled with black soil,
|
| 128 |
+
apple growing on trees,
|
| 129 |
+
red complete apple,
|
| 130 |
+
apple with a stalk,
|
| 131 |
+
a woman brushing her teeth,
|
| 132 |
+
toothbrush held by someone,
|
| 133 |
+
toilet brush with colored bristles,
|
| 134 |
+
a customer whose hair is being cut by barber,
|
| 135 |
+
a barber at work,
|
| 136 |
+
cloth covering the barber,
|
| 137 |
+
shopping cart pushed by people in the supermarket,
|
| 138 |
+
shopping cart with people in the supermarket,
|
| 139 |
+
shopping cart full of goods,
|
| 140 |
+
a child wearing a mask,
|
| 141 |
+
refrigerator with fruit,
|
| 142 |
+
a drink bottle in the refrigerator,
|
| 143 |
+
refrigerator with more than two doors,
|
| 144 |
+
a watch placed on a table or cloth,
|
| 145 |
+
a watch with three or more watch hands can be seen,
|
| 146 |
+
a watch with one or more small dials,
|
| 147 |
+
clothes hanger,
|
| 148 |
+
a piece of clothing hanging on the hanger,
|
| 149 |
+
a piece of clothing worn on plastic models,
|
| 150 |
+
leather bag with glossy surface,
|
| 151 |
+
backpack,
|
| 152 |
+
open package,
|
| 153 |
+
a fish held by people,
|
| 154 |
+
a person who is fishing with a fishing rod,
|
| 155 |
+
a fisherman standing on the shore with his body soaked in water, camera hold on someone's shoulder,
|
| 156 |
+
a person being interviewed,
|
| 157 |
+
a person with microphone hold in hand,
|
| 158 |
+
""",
|
| 159 |
+
0.20,
|
| 160 |
+
["object detection", "instance segmentation"],
|
| 161 |
+
],
|
| 162 |
+
[
|
| 163 |
+
this_dir + "/examples/094_56726435.jpg",
|
| 164 |
+
# "donut with colored granules on the surface",
|
| 165 |
+
"""donut with colored granules on the surface,
|
| 166 |
+
railings being crossed by horses,
|
| 167 |
+
a horse running or jumping,
|
| 168 |
+
equestrian rider's helmet,
|
| 169 |
+
outdoor dog led by rope,
|
| 170 |
+
a dog being touched,
|
| 171 |
+
clothed dog,
|
| 172 |
+
basketball in hand,
|
| 173 |
+
a basketball player with both feet off the ground,
|
| 174 |
+
player with basketball in the hand,
|
| 175 |
+
spoon on the plate,
|
| 176 |
+
coffee cup with coffee,
|
| 177 |
+
the nearest dessert to the coffee cup,
|
| 178 |
+
the bartender who is mixing wine,
|
| 179 |
+
a bartender in a suit,
|
| 180 |
+
wine glass with wine,
|
| 181 |
+
a person in aprons,
|
| 182 |
+
pot with food,
|
| 183 |
+
a knife being used to cut vegetables,
|
| 184 |
+
striped sofa in the room,
|
| 185 |
+
a sofa with pillows on it in the room,
|
| 186 |
+
lights on in the room,
|
| 187 |
+
an indoor lying pet,
|
| 188 |
+
a cat on the sofa,
|
| 189 |
+
one pet looking directly at the camera indoors,
|
| 190 |
+
a bed with patterns in the room,
|
| 191 |
+
the lamp on the table beside the bed,
|
| 192 |
+
pillow placed at the head of the bed,
|
| 193 |
+
a blackboard full of words in the classroom,
|
| 194 |
+
a blackboard or whiteboard with something pasted,
|
| 195 |
+
child sitting at desks in the classroom,
|
| 196 |
+
a person standing in front of bookshelves in the library,
|
| 197 |
+
the table someone is using in the library,
|
| 198 |
+
a person who touches books in the library,
|
| 199 |
+
a person standing in front of the cake counter,
|
| 200 |
+
a square plate full of cakes,
|
| 201 |
+
a cake decorated with cream,
|
| 202 |
+
hot dog with vegetables,
|
| 203 |
+
hot dog with sauce on the surface,
|
| 204 |
+
red sausage,
|
| 205 |
+
flowerpot with flowers potted inside,
|
| 206 |
+
monochrome flowerpot,
|
| 207 |
+
a flowerpot filled with black soil,
|
| 208 |
+
apple growing on trees,
|
| 209 |
+
red complete apple,
|
| 210 |
+
apple with a stalk,
|
| 211 |
+
a woman brushing her teeth,
|
| 212 |
+
toothbrush held by someone,
|
| 213 |
+
toilet brush with colored bristles,
|
| 214 |
+
a customer whose hair is being cut by barber,
|
| 215 |
+
a barber at work,
|
| 216 |
+
cloth covering the barber,
|
| 217 |
+
a plastic toy,
|
| 218 |
+
a plush toy,
|
| 219 |
+
a humanoid toy,
|
| 220 |
+
shopping cart pushed by people in the supermarket,
|
| 221 |
+
shopping cart with people in the supermarket,
|
| 222 |
+
shopping cart full of goods,
|
| 223 |
+
a child wearing a mask,
|
| 224 |
+
a mask on face with half a face exposed,
|
| 225 |
+
a mask on face with only eyes exposed,
|
| 226 |
+
refrigerator with fruit,
|
| 227 |
+
a drink bottle in the refrigerator,
|
| 228 |
+
refrigerator with more than two doors,
|
| 229 |
+
a watch placed on a table or cloth,
|
| 230 |
+
a watch with three or more watch hands can be seen,
|
| 231 |
+
a watch with one or more small dials,
|
| 232 |
+
clothes hanger,
|
| 233 |
+
a piece of clothing hanging on the hanger,
|
| 234 |
+
a piece of clothing worn on plastic models,
|
| 235 |
+
leather bag with glossy surface,
|
| 236 |
+
backpack,
|
| 237 |
+
open package,
|
| 238 |
+
a fish held by people,
|
| 239 |
+
a person who is fishing with a fishing rod,
|
| 240 |
+
a fisherman standing on the shore with his body soaked in water, camera hold on someone's shoulder,
|
| 241 |
+
a person being interviewed,
|
| 242 |
+
a person with microphone hold in hand,
|
| 243 |
+
""",
|
| 244 |
+
0.50,
|
| 245 |
+
["object detection", "instance segmentation"],
|
| 246 |
+
],
|
| 247 |
+
[
|
| 248 |
+
this_dir + "/examples/013_438973263.jpg",
|
| 249 |
+
# "a male lion with a mane",
|
| 250 |
+
"""a male lion with a mane,
|
| 251 |
+
railings being crossed by horses,
|
| 252 |
+
a horse running or jumping,
|
| 253 |
+
equestrian rider's helmet,
|
| 254 |
+
outdoor dog led by rope,
|
| 255 |
+
a dog being touched,
|
| 256 |
+
clothed dog,
|
| 257 |
+
basketball in hand,
|
| 258 |
+
a basketball player with both feet off the ground,
|
| 259 |
+
player with basketball in the hand,
|
| 260 |
+
spoon on the plate,
|
| 261 |
+
coffee cup with coffee,
|
| 262 |
+
the nearest dessert to the coffee cup,
|
| 263 |
+
the bartender who is mixing wine,
|
| 264 |
+
a bartender in a suit,
|
| 265 |
+
wine glass with wine,
|
| 266 |
+
a person in aprons,
|
| 267 |
+
pot with food,
|
| 268 |
+
a knife being used to cut vegetables,
|
| 269 |
+
striped sofa in the room,
|
| 270 |
+
a sofa with pillows on it in the room,
|
| 271 |
+
lights on in the room,
|
| 272 |
+
an indoor lying pet,
|
| 273 |
+
a cat on the sofa,
|
| 274 |
+
one pet looking directly at the camera indoors,
|
| 275 |
+
a bed with patterns in the room,
|
| 276 |
+
the lamp on the table beside the bed,
|
| 277 |
+
pillow placed at the head of the bed,
|
| 278 |
+
a blackboard full of words in the classroom,
|
| 279 |
+
a blackboard or whiteboard with something pasted,
|
| 280 |
+
child sitting at desks in the classroom,
|
| 281 |
+
a person standing in front of bookshelves in the library,
|
| 282 |
+
the table someone is using in the library,
|
| 283 |
+
a person who touches books in the library,
|
| 284 |
+
a person standing in front of the cake counter,
|
| 285 |
+
a square plate full of cakes,
|
| 286 |
+
a cake decorated with cream,
|
| 287 |
+
hot dog with vegetables,
|
| 288 |
+
hot dog with sauce on the surface,
|
| 289 |
+
red sausage,
|
| 290 |
+
flowerpot with flowers potted inside,
|
| 291 |
+
monochrome flowerpot,
|
| 292 |
+
a flowerpot filled with black soil,
|
| 293 |
+
apple growing on trees,
|
| 294 |
+
red complete apple,
|
| 295 |
+
apple with a stalk,
|
| 296 |
+
a woman brushing her teeth,
|
| 297 |
+
toothbrush held by someone,
|
| 298 |
+
toilet brush with colored bristles,
|
| 299 |
+
a customer whose hair is being cut by barber,
|
| 300 |
+
a barber at work,
|
| 301 |
+
cloth covering the barber,
|
| 302 |
+
a plastic toy,
|
| 303 |
+
a plush toy,
|
| 304 |
+
a humanoid toy,
|
| 305 |
+
shopping cart pushed by people in the supermarket,
|
| 306 |
+
shopping cart with people in the supermarket,
|
| 307 |
+
shopping cart full of goods,
|
| 308 |
+
a child wearing a mask,
|
| 309 |
+
a mask on face with half a face exposed,
|
| 310 |
+
a mask on face with only eyes exposed,
|
| 311 |
+
refrigerator with fruit,
|
| 312 |
+
a drink bottle in the refrigerator,
|
| 313 |
+
refrigerator with more than two doors,
|
| 314 |
+
a watch placed on a table or cloth,
|
| 315 |
+
a watch with three or more watch hands can be seen,
|
| 316 |
+
a watch with one or more small dials,
|
| 317 |
+
clothes hanger,
|
| 318 |
+
a piece of clothing hanging on the hanger,
|
| 319 |
+
a piece of clothing worn on plastic models,
|
| 320 |
+
leather bag with glossy surface,
|
| 321 |
+
backpack,
|
| 322 |
+
open package,
|
| 323 |
+
a fish held by people,
|
| 324 |
+
a person who is fishing with a fishing rod,
|
| 325 |
+
a fisherman standing on the shore with his body soaked in water, camera hold on someone's shoulder,
|
| 326 |
+
a person being interviewed,
|
| 327 |
+
a person with microphone hold in hand,
|
| 328 |
+
""",
|
| 329 |
+
# 0.25,
|
| 330 |
+
0.50,
|
| 331 |
+
["object detection", "instance segmentation"],
|
| 332 |
+
],
|
| 333 |
+
]
|
| 334 |
+
|
| 335 |
+
ckpt_repo_id = "shenyunhang/APE"
|
| 336 |
+
|
| 337 |
+
|
| 338 |
+
def setup_model(name):
|
| 339 |
+
gc.collect()
|
| 340 |
+
torch.cuda.empty_cache()
|
| 341 |
+
|
| 342 |
+
if save_memory:
|
| 343 |
+
pass
|
| 344 |
+
else:
|
| 345 |
+
return
|
| 346 |
+
|
| 347 |
+
for key, demo in all_demo.items():
|
| 348 |
+
if key == name:
|
| 349 |
+
demo.predictor.model.to(running_device)
|
| 350 |
+
else:
|
| 351 |
+
demo.predictor.model.to("cpu")
|
| 352 |
+
|
| 353 |
+
gc.collect()
|
| 354 |
+
torch.cuda.empty_cache()
|
| 355 |
+
|
| 356 |
+
|
| 357 |
+
def run_on_image_A(input_image_path, input_text, score_threshold, output_type):
|
| 358 |
+
logger.info("run_on_image")
|
| 359 |
+
|
| 360 |
+
setup_model("APE_A")
|
| 361 |
+
demo = all_demo["APE_A"]
|
| 362 |
+
cfg = all_cfg["APE_A"]
|
| 363 |
+
demo.predictor.model.model_vision.test_score_thresh = score_threshold
|
| 364 |
+
|
| 365 |
+
return run_on_image(
|
| 366 |
+
input_image_path,
|
| 367 |
+
input_text,
|
| 368 |
+
output_type,
|
| 369 |
+
demo,
|
| 370 |
+
cfg,
|
| 371 |
+
)
|
| 372 |
+
|
| 373 |
+
|
| 374 |
+
def run_on_image_C(input_image_path, input_text, score_threshold, output_type):
|
| 375 |
+
logger.info("run_on_image_C")
|
| 376 |
+
|
| 377 |
+
setup_model("APE_C")
|
| 378 |
+
demo = all_demo["APE_C"]
|
| 379 |
+
cfg = all_cfg["APE_C"]
|
| 380 |
+
demo.predictor.model.model_vision.test_score_thresh = score_threshold
|
| 381 |
+
|
| 382 |
+
return run_on_image(
|
| 383 |
+
input_image_path,
|
| 384 |
+
input_text,
|
| 385 |
+
output_type,
|
| 386 |
+
demo,
|
| 387 |
+
cfg,
|
| 388 |
+
)
|
| 389 |
+
|
| 390 |
+
|
| 391 |
+
def run_on_image_D(input_image_path, input_text, score_threshold, output_type):
|
| 392 |
+
logger.info("run_on_image_D")
|
| 393 |
+
|
| 394 |
+
setup_model("APE_D")
|
| 395 |
+
demo = all_demo["APE_D"]
|
| 396 |
+
cfg = all_cfg["APE_D"]
|
| 397 |
+
demo.predictor.model.model_vision.test_score_thresh = score_threshold
|
| 398 |
+
|
| 399 |
+
return run_on_image(
|
| 400 |
+
input_image_path,
|
| 401 |
+
input_text,
|
| 402 |
+
output_type,
|
| 403 |
+
demo,
|
| 404 |
+
cfg,
|
| 405 |
+
)
|
| 406 |
+
|
| 407 |
+
|
| 408 |
+
def run_on_image_comparison(input_image_path, input_text, score_threshold, output_type):
|
| 409 |
+
logger.info("run_on_image_comparison")
|
| 410 |
+
|
| 411 |
+
r = []
|
| 412 |
+
for key in all_demo.keys():
|
| 413 |
+
logger.info("run_on_image_comparison {}".format(key))
|
| 414 |
+
setup_model(key)
|
| 415 |
+
demo = all_demo[key]
|
| 416 |
+
cfg = all_cfg[key]
|
| 417 |
+
demo.predictor.model.model_vision.test_score_thresh = score_threshold
|
| 418 |
+
|
| 419 |
+
img, _ = run_on_image(
|
| 420 |
+
input_image_path,
|
| 421 |
+
input_text,
|
| 422 |
+
output_type,
|
| 423 |
+
demo,
|
| 424 |
+
cfg,
|
| 425 |
+
)
|
| 426 |
+
r.append(img)
|
| 427 |
+
|
| 428 |
+
return r
|
| 429 |
+
|
| 430 |
+
|
| 431 |
+
def run_on_image(
|
| 432 |
+
input_image_path,
|
| 433 |
+
input_text,
|
| 434 |
+
output_type,
|
| 435 |
+
demo,
|
| 436 |
+
cfg,
|
| 437 |
+
):
|
| 438 |
+
with_box = False
|
| 439 |
+
with_mask = False
|
| 440 |
+
with_sseg = False
|
| 441 |
+
if "object detection" in output_type:
|
| 442 |
+
with_box = True
|
| 443 |
+
if "instance segmentation" in output_type:
|
| 444 |
+
with_mask = True
|
| 445 |
+
if "semantic segmentation" in output_type:
|
| 446 |
+
with_sseg = True
|
| 447 |
+
|
| 448 |
+
if isinstance(input_image_path, dict):
|
| 449 |
+
input_mask_path = input_image_path["mask"]
|
| 450 |
+
input_image_path = input_image_path["image"]
|
| 451 |
+
print("input_image_path", input_image_path)
|
| 452 |
+
print("input_mask_path", input_mask_path)
|
| 453 |
+
else:
|
| 454 |
+
input_mask_path = None
|
| 455 |
+
|
| 456 |
+
print("input_text", input_text)
|
| 457 |
+
|
| 458 |
+
if isinstance(cfg, CfgNode):
|
| 459 |
+
input_format = cfg.INPUT.FORMAT
|
| 460 |
+
else:
|
| 461 |
+
if "model_vision" in cfg.model:
|
| 462 |
+
input_format = cfg.model.model_vision.input_format
|
| 463 |
+
else:
|
| 464 |
+
input_format = cfg.model.input_format
|
| 465 |
+
|
| 466 |
+
input_image = read_image(input_image_path, format="BGR")
|
| 467 |
+
# img = cv2.imread(input_image_path)
|
| 468 |
+
# cv2.imwrite("tmp.jpg", img)
|
| 469 |
+
# # input_image = read_image("tmp.jpg", format=input_format)
|
| 470 |
+
# input_image = read_image("tmp.jpg", format="BGR")
|
| 471 |
+
|
| 472 |
+
if input_mask_path is not None:
|
| 473 |
+
input_mask = read_image(input_mask_path, "L").squeeze(2)
|
| 474 |
+
print("input_mask", input_mask)
|
| 475 |
+
print("input_mask", input_mask.shape)
|
| 476 |
+
else:
|
| 477 |
+
input_mask = None
|
| 478 |
+
|
| 479 |
+
if not with_box and not with_mask and not with_sseg:
|
| 480 |
+
return input_image[:, :, ::-1]
|
| 481 |
+
|
| 482 |
+
if input_image.shape[0] > 1024 or input_image.shape[1] > 1024:
|
| 483 |
+
transform = aug.get_transform(input_image)
|
| 484 |
+
input_image = transform.apply_image(input_image)
|
| 485 |
+
else:
|
| 486 |
+
transform = None
|
| 487 |
+
|
| 488 |
+
start_time = time.time()
|
| 489 |
+
predictions, visualized_output, _, metadata = demo.run_on_image(
|
| 490 |
+
input_image,
|
| 491 |
+
text_prompt=input_text,
|
| 492 |
+
mask_prompt=input_mask,
|
| 493 |
+
with_box=with_box,
|
| 494 |
+
with_mask=with_mask,
|
| 495 |
+
with_sseg=with_sseg,
|
| 496 |
+
)
|
| 497 |
+
|
| 498 |
+
logger.info(
|
| 499 |
+
"{} in {:.2f}s".format(
|
| 500 |
+
"detected {} instances".format(len(predictions["instances"]))
|
| 501 |
+
if "instances" in predictions
|
| 502 |
+
else "finished",
|
| 503 |
+
time.time() - start_time,
|
| 504 |
+
)
|
| 505 |
+
)
|
| 506 |
+
|
| 507 |
+
output_image = visualized_output.get_image()
|
| 508 |
+
print("output_image", output_image.shape)
|
| 509 |
+
# if input_format == "RGB":
|
| 510 |
+
# output_image = output_image[:, :, ::-1]
|
| 511 |
+
if transform:
|
| 512 |
+
output_image = transform.inverse().apply_image(output_image)
|
| 513 |
+
print("output_image", output_image.shape)
|
| 514 |
+
|
| 515 |
+
output_image = Image.fromarray(output_image)
|
| 516 |
+
|
| 517 |
+
gc.collect()
|
| 518 |
+
torch.cuda.empty_cache()
|
| 519 |
+
|
| 520 |
+
json_results = instances_to_coco_json(predictions["instances"].to(demo.cpu_device), 0)
|
| 521 |
+
for json_result in json_results:
|
| 522 |
+
json_result["category_name"] = metadata.thing_classes[json_result["category_id"]]
|
| 523 |
+
del json_result["image_id"]
|
| 524 |
+
|
| 525 |
+
return output_image, json_results
|
| 526 |
+
|
| 527 |
+
|
| 528 |
+
def load_APE_A():
|
| 529 |
+
# init_checkpoint= "output2/APE/configs/LVISCOCOCOCOSTUFF_O365_OID_VG/ape_deta/ape_deta_vitl_eva02_lsj_cp_720k_20230504_002019/model_final.pth"
|
| 530 |
+
init_checkpoint = "configs/LVISCOCOCOCOSTUFF_O365_OID_VG/ape_deta/ape_deta_vitl_eva02_lsj_cp_720k_20230504_002019/model_final.pth"
|
| 531 |
+
init_checkpoint = hf_hub_download(repo_id=ckpt_repo_id, filename=init_checkpoint)
|
| 532 |
+
|
| 533 |
+
args = get_parser().parse_args()
|
| 534 |
+
args.config_file = get_config_file(
|
| 535 |
+
"LVISCOCOCOCOSTUFF_O365_OID_VG/ape_deta/ape_deta_vitl_eva02_lsj1024_cp_720k.py"
|
| 536 |
+
)
|
| 537 |
+
args.confidence_threshold = 0.01
|
| 538 |
+
args.opts = [
|
| 539 |
+
"train.init_checkpoint='{}'".format(init_checkpoint),
|
| 540 |
+
"model.model_language.cache_dir=''",
|
| 541 |
+
"model.model_vision.select_box_nums_for_evaluation=500",
|
| 542 |
+
"model.model_vision.backbone.net.xattn=False",
|
| 543 |
+
"model.model_vision.transformer.encoder.pytorch_attn=True",
|
| 544 |
+
"model.model_vision.transformer.decoder.pytorch_attn=True",
|
| 545 |
+
]
|
| 546 |
+
if running_device == "cpu":
|
| 547 |
+
args.opts += [
|
| 548 |
+
"model.model_language.dtype='float32'",
|
| 549 |
+
]
|
| 550 |
+
logger.info("Arguments: " + str(args))
|
| 551 |
+
cfg = setup_cfg(args)
|
| 552 |
+
|
| 553 |
+
cfg.model.model_vision.criterion[0].use_fed_loss = False
|
| 554 |
+
cfg.model.model_vision.criterion[2].use_fed_loss = False
|
| 555 |
+
cfg.train.device = running_device
|
| 556 |
+
|
| 557 |
+
ape.modeling.text.eva01_clip.eva_clip._MODEL_CONFIGS[cfg.model.model_language.clip_model][
|
| 558 |
+
"vision_cfg"
|
| 559 |
+
]["layers"] = 1
|
| 560 |
+
ape.modeling.text.eva01_clip.eva_clip._MODEL_CONFIGS[cfg.model.model_language.clip_model][
|
| 561 |
+
"vision_cfg"
|
| 562 |
+
]["fusedLN"] = False
|
| 563 |
+
|
| 564 |
+
demo = VisualizationDemo(cfg, args=args)
|
| 565 |
+
if save_memory:
|
| 566 |
+
demo.predictor.model.to("cpu")
|
| 567 |
+
# demo.predictor.model.half()
|
| 568 |
+
else:
|
| 569 |
+
demo.predictor.model.to(running_device)
|
| 570 |
+
|
| 571 |
+
all_demo["APE_A"] = demo
|
| 572 |
+
all_cfg["APE_A"] = cfg
|
| 573 |
+
|
| 574 |
+
|
| 575 |
+
def load_APE_B():
|
| 576 |
+
# init_checkpoint= "output2/APE/configs/LVISCOCOCOCOSTUFF_O365_OID_VGR_REFCOCO/ape_deta/ape_deta_vitl_eva02_vlf_lsj_cp_1080k_20230702_225418/model_final.pth"
|
| 577 |
+
init_checkpoint = "configs/LVISCOCOCOCOSTUFF_O365_OID_VGR_REFCOCO/ape_deta/ape_deta_vitl_eva02_vlf_lsj_cp_1080k_20230702_225418/model_final.pth"
|
| 578 |
+
init_checkpoint = hf_hub_download(repo_id=ckpt_repo_id, filename=init_checkpoint)
|
| 579 |
+
|
| 580 |
+
args = get_parser().parse_args()
|
| 581 |
+
args.config_file = get_config_file(
|
| 582 |
+
"LVISCOCOCOCOSTUFF_O365_OID_VGR_REFCOCO/ape_deta/ape_deta_vitl_eva02_vlf_lsj1024_cp_1080k.py"
|
| 583 |
+
)
|
| 584 |
+
args.confidence_threshold = 0.01
|
| 585 |
+
args.opts = [
|
| 586 |
+
"train.init_checkpoint='{}'".format(init_checkpoint),
|
| 587 |
+
"model.model_language.cache_dir=''",
|
| 588 |
+
"model.model_vision.select_box_nums_for_evaluation=500",
|
| 589 |
+
"model.model_vision.text_feature_bank_reset=True",
|
| 590 |
+
"model.model_vision.backbone.net.xattn=False",
|
| 591 |
+
"model.model_vision.transformer.encoder.pytorch_attn=True",
|
| 592 |
+
"model.model_vision.transformer.decoder.pytorch_attn=True",
|
| 593 |
+
]
|
| 594 |
+
if running_device == "cpu":
|
| 595 |
+
args.opts += [
|
| 596 |
+
"model.model_language.dtype='float32'",
|
| 597 |
+
]
|
| 598 |
+
logger.info("Arguments: " + str(args))
|
| 599 |
+
cfg = setup_cfg(args)
|
| 600 |
+
|
| 601 |
+
cfg.model.model_vision.criterion[0].use_fed_loss = False
|
| 602 |
+
cfg.model.model_vision.criterion[2].use_fed_loss = False
|
| 603 |
+
cfg.train.device = running_device
|
| 604 |
+
|
| 605 |
+
ape.modeling.text.eva01_clip.eva_clip._MODEL_CONFIGS[cfg.model.model_language.clip_model][
|
| 606 |
+
"vision_cfg"
|
| 607 |
+
]["layers"] = 1
|
| 608 |
+
ape.modeling.text.eva01_clip.eva_clip._MODEL_CONFIGS[cfg.model.model_language.clip_model][
|
| 609 |
+
"vision_cfg"
|
| 610 |
+
]["fusedLN"] = False
|
| 611 |
+
|
| 612 |
+
demo = VisualizationDemo(cfg, args=args)
|
| 613 |
+
if save_memory:
|
| 614 |
+
demo.predictor.model.to("cpu")
|
| 615 |
+
# demo.predictor.model.half()
|
| 616 |
+
else:
|
| 617 |
+
demo.predictor.model.to(running_device)
|
| 618 |
+
|
| 619 |
+
all_demo["APE_B"] = demo
|
| 620 |
+
all_cfg["APE_B"] = cfg
|
| 621 |
+
|
| 622 |
+
|
| 623 |
+
def load_APE_C():
|
| 624 |
+
# init_checkpoint= "output2/APE/configs/LVISCOCOCOCOSTUFF_O365_OID_VGR_SA1B_REFCOCO/ape_deta/ape_deta_vitl_eva02_vlf_lsj_cp_1080k_20230702_210950/model_final.pth"
|
| 625 |
+
init_checkpoint = "configs/LVISCOCOCOCOSTUFF_O365_OID_VGR_SA1B_REFCOCO/ape_deta/ape_deta_vitl_eva02_vlf_lsj_cp_1080k_20230702_210950/model_final.pth"
|
| 626 |
+
init_checkpoint = hf_hub_download(repo_id=ckpt_repo_id, filename=init_checkpoint)
|
| 627 |
+
|
| 628 |
+
args = get_parser().parse_args()
|
| 629 |
+
args.config_file = get_config_file(
|
| 630 |
+
"LVISCOCOCOCOSTUFF_O365_OID_VGR_SA1B_REFCOCO/ape_deta/ape_deta_vitl_eva02_vlf_lsj1024_cp_1080k.py"
|
| 631 |
+
)
|
| 632 |
+
args.confidence_threshold = 0.01
|
| 633 |
+
args.opts = [
|
| 634 |
+
"train.init_checkpoint='{}'".format(init_checkpoint),
|
| 635 |
+
"model.model_language.cache_dir=''",
|
| 636 |
+
"model.model_vision.select_box_nums_for_evaluation=500",
|
| 637 |
+
"model.model_vision.text_feature_bank_reset=True",
|
| 638 |
+
"model.model_vision.backbone.net.xattn=False",
|
| 639 |
+
"model.model_vision.transformer.encoder.pytorch_attn=True",
|
| 640 |
+
"model.model_vision.transformer.decoder.pytorch_attn=True",
|
| 641 |
+
]
|
| 642 |
+
if running_device == "cpu":
|
| 643 |
+
args.opts += [
|
| 644 |
+
"model.model_language.dtype='float32'",
|
| 645 |
+
]
|
| 646 |
+
logger.info("Arguments: " + str(args))
|
| 647 |
+
cfg = setup_cfg(args)
|
| 648 |
+
|
| 649 |
+
cfg.model.model_vision.criterion[0].use_fed_loss = False
|
| 650 |
+
cfg.model.model_vision.criterion[2].use_fed_loss = False
|
| 651 |
+
cfg.train.device = running_device
|
| 652 |
+
|
| 653 |
+
ape.modeling.text.eva01_clip.eva_clip._MODEL_CONFIGS[cfg.model.model_language.clip_model][
|
| 654 |
+
"vision_cfg"
|
| 655 |
+
]["layers"] = 1
|
| 656 |
+
ape.modeling.text.eva01_clip.eva_clip._MODEL_CONFIGS[cfg.model.model_language.clip_model][
|
| 657 |
+
"vision_cfg"
|
| 658 |
+
]["fusedLN"] = False
|
| 659 |
+
|
| 660 |
+
demo = VisualizationDemo(cfg, args=args)
|
| 661 |
+
if save_memory:
|
| 662 |
+
demo.predictor.model.to("cpu")
|
| 663 |
+
# demo.predictor.model.half()
|
| 664 |
+
else:
|
| 665 |
+
demo.predictor.model.to(running_device)
|
| 666 |
+
|
| 667 |
+
all_demo["APE_C"] = demo
|
| 668 |
+
all_cfg["APE_C"] = cfg
|
| 669 |
+
|
| 670 |
+
|
| 671 |
+
def load_APE_D():
|
| 672 |
+
# init_checkpoint= "output2/APE/configs/LVISCOCOCOCOSTUFF_O365_OID_VGR_SA1B_REFCOCO_GQA_PhraseCut_Flickr30k/ape_deta/ape_deta_vitl_eva02_clip_vlf_lsj1024_cp_16x4_1080k_mdl_20230829_162438/model_final.pth"
|
| 673 |
+
init_checkpoint = "configs/LVISCOCOCOCOSTUFF_O365_OID_VGR_SA1B_REFCOCO_GQA_PhraseCut_Flickr30k/ape_deta/ape_deta_vitl_eva02_clip_vlf_lsj1024_cp_16x4_1080k_mdl_20230829_162438/model_final.pth"
|
| 674 |
+
init_checkpoint = hf_hub_download(repo_id=ckpt_repo_id, filename=init_checkpoint)
|
| 675 |
+
|
| 676 |
+
args = get_parser().parse_args()
|
| 677 |
+
args.config_file = get_config_file(
|
| 678 |
+
"LVISCOCOCOCOSTUFF_O365_OID_VGR_SA1B_REFCOCO_GQA_PhraseCut_Flickr30k/ape_deta/ape_deta_vitl_eva02_clip_vlf_lsj1024_cp_16x4_1080k.py"
|
| 679 |
+
)
|
| 680 |
+
args.confidence_threshold = 0.01
|
| 681 |
+
args.opts = [
|
| 682 |
+
"train.init_checkpoint='{}'".format(init_checkpoint),
|
| 683 |
+
"model.model_language.cache_dir=''",
|
| 684 |
+
"model.model_vision.select_box_nums_for_evaluation=500",
|
| 685 |
+
"model.model_vision.text_feature_bank_reset=True",
|
| 686 |
+
"model.model_vision.backbone.net.xattn=False",
|
| 687 |
+
"model.model_vision.transformer.encoder.pytorch_attn=True",
|
| 688 |
+
"model.model_vision.transformer.decoder.pytorch_attn=True",
|
| 689 |
+
]
|
| 690 |
+
if running_device == "cpu":
|
| 691 |
+
args.opts += [
|
| 692 |
+
"model.model_language.dtype='float32'",
|
| 693 |
+
]
|
| 694 |
+
logger.info("Arguments: " + str(args))
|
| 695 |
+
cfg = setup_cfg(args)
|
| 696 |
+
|
| 697 |
+
cfg.model.model_vision.criterion[0].use_fed_loss = False
|
| 698 |
+
cfg.model.model_vision.criterion[2].use_fed_loss = False
|
| 699 |
+
cfg.train.device = running_device
|
| 700 |
+
|
| 701 |
+
ape.modeling.text.eva02_clip.factory._MODEL_CONFIGS[cfg.model.model_language.clip_model][
|
| 702 |
+
"vision_cfg"
|
| 703 |
+
]["layers"] = 1
|
| 704 |
+
|
| 705 |
+
demo = VisualizationDemo(cfg, args=args)
|
| 706 |
+
if save_memory:
|
| 707 |
+
demo.predictor.model.to("cpu")
|
| 708 |
+
# demo.predictor.model.half()
|
| 709 |
+
else:
|
| 710 |
+
demo.predictor.model.to(running_device)
|
| 711 |
+
|
| 712 |
+
all_demo["APE_D"] = demo
|
| 713 |
+
all_cfg["APE_D"] = cfg
|
| 714 |
+
|
| 715 |
+
|
| 716 |
+
def APE_A_tab():
|
| 717 |
+
with gr.Tab("APE A"):
|
| 718 |
+
with gr.Row(equal_height=False):
|
| 719 |
+
with gr.Column(scale=1):
|
| 720 |
+
input_image = gr.Image(
|
| 721 |
+
sources=["upload"],
|
| 722 |
+
type="filepath",
|
| 723 |
+
# tool="sketch",
|
| 724 |
+
# brush_radius=50,
|
| 725 |
+
)
|
| 726 |
+
input_text = gr.Textbox(
|
| 727 |
+
label="Object Prompt (optional, if not provided, will only find COCO object.)",
|
| 728 |
+
info="格式: word1,word2,word3,...",
|
| 729 |
+
)
|
| 730 |
+
|
| 731 |
+
score_threshold = gr.Slider(
|
| 732 |
+
label="Score Threshold", minimum=0.01, maximum=1.0, value=0.3, step=0.01
|
| 733 |
+
)
|
| 734 |
+
|
| 735 |
+
output_type = gr.CheckboxGroup(
|
| 736 |
+
["object detection", "instance segmentation"],
|
| 737 |
+
value=["object detection", "instance segmentation"],
|
| 738 |
+
label="Output Type",
|
| 739 |
+
info="Which kind of output is displayed?",
|
| 740 |
+
).style(item_container=True, container=True)
|
| 741 |
+
|
| 742 |
+
run_button = gr.Button("Run")
|
| 743 |
+
|
| 744 |
+
with gr.Column(scale=2):
|
| 745 |
+
gallery = gr.Image(
|
| 746 |
+
type="pil",
|
| 747 |
+
)
|
| 748 |
+
|
| 749 |
+
example_data = gr.Dataset(
|
| 750 |
+
components=[input_image, input_text, score_threshold],
|
| 751 |
+
samples=examples,
|
| 752 |
+
samples_per_page=5,
|
| 753 |
+
)
|
| 754 |
+
example_data.click(fn=set_example, inputs=example_data, outputs=example_data.components)
|
| 755 |
+
|
| 756 |
+
# add_tail_info()
|
| 757 |
+
output_json = gr.JSON(label="json results")
|
| 758 |
+
|
| 759 |
+
run_button.click(
|
| 760 |
+
fn=run_on_image,
|
| 761 |
+
inputs=[input_image, input_text, score_threshold, output_type],
|
| 762 |
+
outputs=[gallery, output_json],
|
| 763 |
+
)
|
| 764 |
+
|
| 765 |
+
|
| 766 |
+
def APE_C_tab():
|
| 767 |
+
with gr.Tab("APE C"):
|
| 768 |
+
with gr.Row(equal_height=False):
|
| 769 |
+
with gr.Column(scale=1):
|
| 770 |
+
input_image = gr.Image(
|
| 771 |
+
sources=["upload"],
|
| 772 |
+
type="filepath",
|
| 773 |
+
# tool="sketch",
|
| 774 |
+
# brush_radius=50,
|
| 775 |
+
)
|
| 776 |
+
input_text = gr.Textbox(
|
| 777 |
+
label="Object Prompt (optional, if not provided, will only find COCO object.)",
|
| 778 |
+
info="格式: word1,word2,sentence1,sentence2,...",
|
| 779 |
+
)
|
| 780 |
+
|
| 781 |
+
score_threshold = gr.Slider(
|
| 782 |
+
label="Score Threshold", minimum=0.01, maximum=1.0, value=0.3, step=0.01
|
| 783 |
+
)
|
| 784 |
+
|
| 785 |
+
output_type = gr.CheckboxGroup(
|
| 786 |
+
["object detection", "instance segmentation", "semantic segmentation"],
|
| 787 |
+
value=["object detection", "instance segmentation"],
|
| 788 |
+
label="Output Type",
|
| 789 |
+
info="Which kind of output is displayed?",
|
| 790 |
+
).style(item_container=True, container=True)
|
| 791 |
+
|
| 792 |
+
run_button = gr.Button("Run")
|
| 793 |
+
|
| 794 |
+
with gr.Column(scale=2):
|
| 795 |
+
gallery = gr.Image(
|
| 796 |
+
type="pil",
|
| 797 |
+
)
|
| 798 |
+
|
| 799 |
+
example_data = gr.Dataset(
|
| 800 |
+
components=[input_image, input_text, score_threshold],
|
| 801 |
+
samples=example_list,
|
| 802 |
+
samples_per_page=5,
|
| 803 |
+
)
|
| 804 |
+
example_data.click(fn=set_example, inputs=example_data, outputs=example_data.components)
|
| 805 |
+
|
| 806 |
+
# add_tail_info()
|
| 807 |
+
output_json = gr.JSON(label="json results")
|
| 808 |
+
|
| 809 |
+
run_button.click(
|
| 810 |
+
fn=run_on_image_C,
|
| 811 |
+
inputs=[input_image, input_text, score_threshold, output_type],
|
| 812 |
+
outputs=[gallery, output_json],
|
| 813 |
+
)
|
| 814 |
+
|
| 815 |
+
|
| 816 |
+
def APE_D_tab():
|
| 817 |
+
with gr.Tab("APE D"):
|
| 818 |
+
with gr.Row(equal_height=False):
|
| 819 |
+
with gr.Column(scale=1):
|
| 820 |
+
input_image = gr.Image(
|
| 821 |
+
sources=["upload"],
|
| 822 |
+
type="filepath",
|
| 823 |
+
# tool="sketch",
|
| 824 |
+
# brush_radius=50,
|
| 825 |
+
)
|
| 826 |
+
input_text = gr.Textbox(
|
| 827 |
+
label="Object Prompt (optional, if not provided, will only find COCO object.)",
|
| 828 |
+
info="格式: word1,word2,sentence1,sentence2,...",
|
| 829 |
+
)
|
| 830 |
+
|
| 831 |
+
score_threshold = gr.Slider(
|
| 832 |
+
label="Score Threshold", minimum=0.01, maximum=1.0, value=0.1, step=0.01
|
| 833 |
+
)
|
| 834 |
+
|
| 835 |
+
output_type = gr.CheckboxGroup(
|
| 836 |
+
["object detection", "instance segmentation", "semantic segmentation"],
|
| 837 |
+
value=["object detection", "instance segmentation"],
|
| 838 |
+
label="Output Type",
|
| 839 |
+
info="Which kind of output is displayed?",
|
| 840 |
+
)
|
| 841 |
+
|
| 842 |
+
run_button = gr.Button("Run")
|
| 843 |
+
|
| 844 |
+
with gr.Column(scale=2):
|
| 845 |
+
gallery = gr.Image(
|
| 846 |
+
type="pil",
|
| 847 |
+
)
|
| 848 |
+
|
| 849 |
+
gr.Examples(
|
| 850 |
+
examples=example_list,
|
| 851 |
+
inputs=[input_image, input_text, score_threshold, output_type],
|
| 852 |
+
)
|
| 853 |
+
|
| 854 |
+
# add_tail_info()
|
| 855 |
+
output_json = gr.JSON(label="json results")
|
| 856 |
+
|
| 857 |
+
run_button.click(
|
| 858 |
+
fn=run_on_image_D,
|
| 859 |
+
inputs=[input_image, input_text, score_threshold, output_type],
|
| 860 |
+
outputs=[gallery, output_json],
|
| 861 |
+
)
|
| 862 |
+
|
| 863 |
+
|
| 864 |
+
def comparison_tab():
|
| 865 |
+
with gr.Tab("APE all"):
|
| 866 |
+
with gr.Row(equal_height=False):
|
| 867 |
+
with gr.Column(scale=1):
|
| 868 |
+
input_image = gr.Image(
|
| 869 |
+
sources=["upload"],
|
| 870 |
+
type="filepath",
|
| 871 |
+
# tool="sketch",
|
| 872 |
+
# brush_radius=50,
|
| 873 |
+
)
|
| 874 |
+
input_text = gr.Textbox(
|
| 875 |
+
label="Object Prompt (optional, if not provided, will only find COCO object.)",
|
| 876 |
+
info="格式: word1,word2,sentence1,sentence2,...",
|
| 877 |
+
)
|
| 878 |
+
|
| 879 |
+
score_threshold = gr.Slider(
|
| 880 |
+
label="Score Threshold", minimum=0.01, maximum=1.0, value=0.1, step=0.01
|
| 881 |
+
)
|
| 882 |
+
|
| 883 |
+
output_type = gr.CheckboxGroup(
|
| 884 |
+
["object detection", "instance segmentation", "semantic segmentation"],
|
| 885 |
+
value=["object detection", "instance segmentation"],
|
| 886 |
+
label="Output Type",
|
| 887 |
+
info="Which kind of output is displayed?",
|
| 888 |
+
)
|
| 889 |
+
|
| 890 |
+
run_button = gr.Button("Run")
|
| 891 |
+
|
| 892 |
+
gallery_all = []
|
| 893 |
+
with gr.Column(scale=2):
|
| 894 |
+
for key in all_demo.keys():
|
| 895 |
+
gallery = gr.Image(
|
| 896 |
+
label=key,
|
| 897 |
+
type="pil",
|
| 898 |
+
)
|
| 899 |
+
gallery_all.append(gallery)
|
| 900 |
+
|
| 901 |
+
gr.Examples(
|
| 902 |
+
examples=example_list,
|
| 903 |
+
inputs=[input_image, input_text, score_threshold, output_type],
|
| 904 |
+
)
|
| 905 |
+
|
| 906 |
+
# add_tail_info()
|
| 907 |
+
|
| 908 |
+
run_button.click(
|
| 909 |
+
fn=run_on_image_comparison,
|
| 910 |
+
inputs=[input_image, input_text, score_threshold, output_type],
|
| 911 |
+
outputs=gallery_all,
|
| 912 |
+
)
|
| 913 |
+
|
| 914 |
+
|
| 915 |
+
def is_port_in_use(port: int) -> bool:
|
| 916 |
+
import socket
|
| 917 |
+
|
| 918 |
+
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
|
| 919 |
+
return s.connect_ex(("localhost", port)) == 0
|
| 920 |
+
|
| 921 |
+
|
| 922 |
+
def add_head_info(max_available_memory):
|
| 923 |
+
gr.Markdown(
|
| 924 |
+
"# APE: Aligning and Prompting Everything All at Once for Universal Visual Perception"
|
| 925 |
+
)
|
| 926 |
+
if max_available_memory:
|
| 927 |
+
gr.Markdown(
|
| 928 |
+
"Note multiple models are deployed on single GPU, so it may take several minutes to run the models and visualize the results."
|
| 929 |
+
)
|
| 930 |
+
else:
|
| 931 |
+
gr.Markdown(
|
| 932 |
+
"Note multiple models are deployed on CPU, so it may take a while to run the models and visualize the results."
|
| 933 |
+
)
|
| 934 |
+
gr.Markdown(
|
| 935 |
+
"Noted results computed by CPU are slightly different to results computed by GPU, and some libraries are disabled on CPU."
|
| 936 |
+
)
|
| 937 |
+
gr.Markdown(
|
| 938 |
+
"If the demo is out of memory, try to ***decrease*** the number of object prompt and ***increase*** score threshold."
|
| 939 |
+
)
|
| 940 |
+
|
| 941 |
+
gr.Markdown("---")
|
| 942 |
+
|
| 943 |
+
|
| 944 |
+
def add_tail_info():
|
| 945 |
+
gr.Markdown("---")
|
| 946 |
+
gr.Markdown("### We also support Prompt")
|
| 947 |
+
gr.Markdown(
|
| 948 |
+
"""
|
| 949 |
+
| Location prompt | result | Location prompt | result |
|
| 950 |
+
| ---- | ---- | ---- | ---- |
|
| 951 |
+
|  |  |  |  |
|
| 952 |
+
|  |  |  |  |
|
| 953 |
+
"""
|
| 954 |
+
)
|
| 955 |
+
gr.Markdown("---")
|
| 956 |
+
|
| 957 |
+
|
| 958 |
+
if __name__ == "__main__":
|
| 959 |
+
available_port = [80, 8080]
|
| 960 |
+
for port in available_port:
|
| 961 |
+
if is_port_in_use(port):
|
| 962 |
+
continue
|
| 963 |
+
else:
|
| 964 |
+
server_port = port
|
| 965 |
+
break
|
| 966 |
+
print("server_port", server_port)
|
| 967 |
+
|
| 968 |
+
available_memory = [
|
| 969 |
+
torch.cuda.mem_get_info(i)[0] / 1024**3 for i in range(torch.cuda.device_count())
|
| 970 |
+
]
|
| 971 |
+
|
| 972 |
+
global running_device
|
| 973 |
+
if len(available_memory) > 0:
|
| 974 |
+
max_available_memory = max(available_memory)
|
| 975 |
+
device_id = available_memory.index(max_available_memory)
|
| 976 |
+
|
| 977 |
+
running_device = "cuda:" + str(device_id)
|
| 978 |
+
else:
|
| 979 |
+
max_available_memory = 0
|
| 980 |
+
running_device = "cpu"
|
| 981 |
+
|
| 982 |
+
global save_memory
|
| 983 |
+
save_memory = False
|
| 984 |
+
if max_available_memory > 0 and max_available_memory < 40:
|
| 985 |
+
save_memory = True
|
| 986 |
+
|
| 987 |
+
print("available_memory", available_memory)
|
| 988 |
+
print("max_available_memory", max_available_memory)
|
| 989 |
+
print("running_device", running_device)
|
| 990 |
+
print("save_memory", save_memory)
|
| 991 |
+
|
| 992 |
+
# ==========================================================================================
|
| 993 |
+
|
| 994 |
+
mp.set_start_method("spawn", force=True)
|
| 995 |
+
setup_logger(name="fvcore")
|
| 996 |
+
setup_logger(name="ape")
|
| 997 |
+
global logger
|
| 998 |
+
logger = setup_logger()
|
| 999 |
+
|
| 1000 |
+
global aug
|
| 1001 |
+
aug = T.ResizeShortestEdge([1024, 1024], 1024)
|
| 1002 |
+
|
| 1003 |
+
global all_demo
|
| 1004 |
+
all_demo = {}
|
| 1005 |
+
all_cfg = {}
|
| 1006 |
+
|
| 1007 |
+
# load_APE_A()
|
| 1008 |
+
# load_APE_B()
|
| 1009 |
+
# load_APE_C()
|
| 1010 |
+
save_memory = False
|
| 1011 |
+
load_APE_D()
|
| 1012 |
+
|
| 1013 |
+
title = "APE: Aligning and Prompting Everything All at Once for Universal Visual Perception"
|
| 1014 |
+
block = gr.Blocks(title=title).queue()
|
| 1015 |
+
with block:
|
| 1016 |
+
add_head_info(max_available_memory)
|
| 1017 |
+
|
| 1018 |
+
# APE_A_tab()
|
| 1019 |
+
# APE_C_tab()
|
| 1020 |
+
APE_D_tab()
|
| 1021 |
+
|
| 1022 |
+
comparison_tab()
|
| 1023 |
+
|
| 1024 |
+
# add_tail_info()
|
| 1025 |
+
|
| 1026 |
+
block.launch(
|
| 1027 |
+
share=False,
|
| 1028 |
+
# server_name="0.0.0.0",
|
| 1029 |
+
# server_port=server_port,
|
| 1030 |
+
show_api=False,
|
| 1031 |
+
show_error=True,
|
| 1032 |
+
)
|
demo_lazy.py
ADDED
|
@@ -0,0 +1,263 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
| 2 |
+
import argparse
|
| 3 |
+
import glob
|
| 4 |
+
import json
|
| 5 |
+
import multiprocessing as mp
|
| 6 |
+
import os
|
| 7 |
+
import tempfile
|
| 8 |
+
import time
|
| 9 |
+
import warnings
|
| 10 |
+
from collections import abc
|
| 11 |
+
|
| 12 |
+
import cv2
|
| 13 |
+
import numpy as np
|
| 14 |
+
import tqdm
|
| 15 |
+
|
| 16 |
+
from detectron2.config import LazyConfig, get_cfg
|
| 17 |
+
from detectron2.data.detection_utils import read_image
|
| 18 |
+
from detectron2.evaluation.coco_evaluation import instances_to_coco_json
|
| 19 |
+
|
| 20 |
+
# from detectron2.projects.deeplab import add_deeplab_config
|
| 21 |
+
# from detectron2.projects.panoptic_deeplab import add_panoptic_deeplab_config
|
| 22 |
+
from detectron2.utils.logger import setup_logger
|
| 23 |
+
from predictor_lazy import VisualizationDemo
|
| 24 |
+
|
| 25 |
+
# constants
|
| 26 |
+
WINDOW_NAME = "APE"
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
def setup_cfg(args):
|
| 30 |
+
# load config from file and command-line arguments
|
| 31 |
+
cfg = LazyConfig.load(args.config_file)
|
| 32 |
+
cfg = LazyConfig.apply_overrides(cfg, args.opts)
|
| 33 |
+
|
| 34 |
+
if "output_dir" in cfg.model:
|
| 35 |
+
cfg.model.output_dir = cfg.train.output_dir
|
| 36 |
+
if "model_vision" in cfg.model and "output_dir" in cfg.model.model_vision:
|
| 37 |
+
cfg.model.model_vision.output_dir = cfg.train.output_dir
|
| 38 |
+
if "train" in cfg.dataloader:
|
| 39 |
+
if isinstance(cfg.dataloader.train, abc.MutableSequence):
|
| 40 |
+
for i in range(len(cfg.dataloader.train)):
|
| 41 |
+
if "output_dir" in cfg.dataloader.train[i].mapper:
|
| 42 |
+
cfg.dataloader.train[i].mapper.output_dir = cfg.train.output_dir
|
| 43 |
+
else:
|
| 44 |
+
if "output_dir" in cfg.dataloader.train.mapper:
|
| 45 |
+
cfg.dataloader.train.mapper.output_dir = cfg.train.output_dir
|
| 46 |
+
|
| 47 |
+
if "model_vision" in cfg.model:
|
| 48 |
+
cfg.model.model_vision.test_score_thresh = args.confidence_threshold
|
| 49 |
+
else:
|
| 50 |
+
cfg.model.test_score_thresh = args.confidence_threshold
|
| 51 |
+
|
| 52 |
+
# default_setup(cfg, args)
|
| 53 |
+
|
| 54 |
+
setup_logger(name="ape")
|
| 55 |
+
setup_logger(name="timm")
|
| 56 |
+
|
| 57 |
+
return cfg
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
def get_parser():
|
| 61 |
+
parser = argparse.ArgumentParser(description="Detectron2 demo for builtin configs")
|
| 62 |
+
parser.add_argument(
|
| 63 |
+
"--config-file",
|
| 64 |
+
default="configs/quick_schedules/mask_rcnn_R_50_FPN_inference_acc_test.yaml",
|
| 65 |
+
metavar="FILE",
|
| 66 |
+
help="path to config file",
|
| 67 |
+
)
|
| 68 |
+
parser.add_argument("--webcam", action="store_true", help="Take inputs from webcam.")
|
| 69 |
+
parser.add_argument("--video-input", help="Path to video file.")
|
| 70 |
+
parser.add_argument(
|
| 71 |
+
"--input",
|
| 72 |
+
nargs="+",
|
| 73 |
+
help="A list of space separated input images; "
|
| 74 |
+
"or a single glob pattern such as 'directory/*.jpg'",
|
| 75 |
+
)
|
| 76 |
+
parser.add_argument(
|
| 77 |
+
"--output",
|
| 78 |
+
help="A file or directory to save output visualizations. "
|
| 79 |
+
"If not given, will show output in an OpenCV window.",
|
| 80 |
+
)
|
| 81 |
+
|
| 82 |
+
parser.add_argument(
|
| 83 |
+
"--confidence-threshold",
|
| 84 |
+
type=float,
|
| 85 |
+
default=0.5,
|
| 86 |
+
help="Minimum score for instance predictions to be shown",
|
| 87 |
+
)
|
| 88 |
+
parser.add_argument(
|
| 89 |
+
"--opts",
|
| 90 |
+
help="Modify config options using the command-line 'KEY VALUE' pairs",
|
| 91 |
+
default=[],
|
| 92 |
+
nargs=argparse.REMAINDER,
|
| 93 |
+
)
|
| 94 |
+
|
| 95 |
+
parser.add_argument("--text-prompt", default=None)
|
| 96 |
+
|
| 97 |
+
parser.add_argument("--with-box", action="store_true", help="show box of instance")
|
| 98 |
+
parser.add_argument("--with-mask", action="store_true", help="show mask of instance")
|
| 99 |
+
parser.add_argument("--with-sseg", action="store_true", help="show mask of class")
|
| 100 |
+
|
| 101 |
+
return parser
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
def test_opencv_video_format(codec, file_ext):
|
| 105 |
+
with tempfile.TemporaryDirectory(prefix="video_format_test") as dir:
|
| 106 |
+
filename = os.path.join(dir, "test_file" + file_ext)
|
| 107 |
+
writer = cv2.VideoWriter(
|
| 108 |
+
filename=filename,
|
| 109 |
+
fourcc=cv2.VideoWriter_fourcc(*codec),
|
| 110 |
+
fps=float(30),
|
| 111 |
+
frameSize=(10, 10),
|
| 112 |
+
isColor=True,
|
| 113 |
+
)
|
| 114 |
+
[writer.write(np.zeros((10, 10, 3), np.uint8)) for _ in range(30)]
|
| 115 |
+
writer.release()
|
| 116 |
+
if os.path.isfile(filename):
|
| 117 |
+
return True
|
| 118 |
+
return False
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
if __name__ == "__main__":
|
| 122 |
+
mp.set_start_method("spawn", force=True)
|
| 123 |
+
args = get_parser().parse_args()
|
| 124 |
+
setup_logger(name="fvcore")
|
| 125 |
+
setup_logger(name="ape")
|
| 126 |
+
logger = setup_logger()
|
| 127 |
+
logger.info("Arguments: " + str(args))
|
| 128 |
+
|
| 129 |
+
cfg = setup_cfg(args)
|
| 130 |
+
|
| 131 |
+
if args.video_input:
|
| 132 |
+
demo = VisualizationDemo(cfg, parallel=True, args=args)
|
| 133 |
+
else:
|
| 134 |
+
demo = VisualizationDemo(cfg, args=args)
|
| 135 |
+
|
| 136 |
+
if args.input:
|
| 137 |
+
if len(args.input) == 1:
|
| 138 |
+
args.input = glob.glob(os.path.expanduser(args.input[0]), recursive=True)
|
| 139 |
+
assert args.input, "The input path(s) was not found"
|
| 140 |
+
for path in tqdm.tqdm(args.input, disable=not args.output):
|
| 141 |
+
# use PIL, to be consistent with evaluation
|
| 142 |
+
try:
|
| 143 |
+
img = read_image(path, format="BGR")
|
| 144 |
+
except Exception as e:
|
| 145 |
+
print("*" * 60)
|
| 146 |
+
print("fail to open image: ", e)
|
| 147 |
+
print("*" * 60)
|
| 148 |
+
continue
|
| 149 |
+
start_time = time.time()
|
| 150 |
+
predictions, visualized_output, visualized_outputs, metadata = demo.run_on_image(
|
| 151 |
+
img,
|
| 152 |
+
text_prompt=args.text_prompt,
|
| 153 |
+
with_box=args.with_box,
|
| 154 |
+
with_mask=args.with_mask,
|
| 155 |
+
with_sseg=args.with_sseg,
|
| 156 |
+
)
|
| 157 |
+
logger.info(
|
| 158 |
+
"{}: {} in {:.2f}s".format(
|
| 159 |
+
path,
|
| 160 |
+
"detected {} instances".format(len(predictions["instances"]))
|
| 161 |
+
if "instances" in predictions
|
| 162 |
+
else "finished",
|
| 163 |
+
time.time() - start_time,
|
| 164 |
+
)
|
| 165 |
+
)
|
| 166 |
+
|
| 167 |
+
if args.output:
|
| 168 |
+
if os.path.isdir(args.output):
|
| 169 |
+
assert os.path.isdir(args.output), args.output
|
| 170 |
+
out_filename = os.path.join(args.output, os.path.basename(path))
|
| 171 |
+
else:
|
| 172 |
+
assert len(args.input) == 1, "Please specify a directory with args.output"
|
| 173 |
+
out_filename = args.output
|
| 174 |
+
out_filename = out_filename.replace(".webp", ".png")
|
| 175 |
+
out_filename = out_filename.replace(".crdownload", ".png")
|
| 176 |
+
out_filename = out_filename.replace(".jfif", ".png")
|
| 177 |
+
visualized_output.save(out_filename)
|
| 178 |
+
|
| 179 |
+
for i in range(len(visualized_outputs)):
|
| 180 |
+
out_filename = (
|
| 181 |
+
os.path.join(args.output, os.path.basename(path)) + "." + str(i) + ".png"
|
| 182 |
+
)
|
| 183 |
+
visualized_outputs[i].save(out_filename)
|
| 184 |
+
|
| 185 |
+
# import pickle
|
| 186 |
+
# with open(out_filename + ".pkl", "wb") as outp:
|
| 187 |
+
# pickle.dump(predictions, outp, pickle.HIGHEST_PROTOCOL)
|
| 188 |
+
|
| 189 |
+
if "instances" in predictions:
|
| 190 |
+
results = instances_to_coco_json(
|
| 191 |
+
predictions["instances"].to(demo.cpu_device), path
|
| 192 |
+
)
|
| 193 |
+
for result in results:
|
| 194 |
+
result["category_name"] = metadata.thing_classes[result["category_id"]]
|
| 195 |
+
result["image_name"] = result["image_id"]
|
| 196 |
+
|
| 197 |
+
with open(out_filename + ".json", "w") as outp:
|
| 198 |
+
json.dump(results, outp)
|
| 199 |
+
else:
|
| 200 |
+
cv2.namedWindow(WINDOW_NAME, cv2.WINDOW_NORMAL)
|
| 201 |
+
cv2.imshow(WINDOW_NAME, visualized_output.get_image()[:, :, ::-1])
|
| 202 |
+
if cv2.waitKey(0) == 27:
|
| 203 |
+
break # esc to quit
|
| 204 |
+
elif args.webcam:
|
| 205 |
+
assert args.input is None, "Cannot have both --input and --webcam!"
|
| 206 |
+
assert args.output is None, "output not yet supported with --webcam!"
|
| 207 |
+
cam = cv2.VideoCapture(0)
|
| 208 |
+
for vis in tqdm.tqdm(demo.run_on_video(cam)):
|
| 209 |
+
cv2.namedWindow(WINDOW_NAME, cv2.WINDOW_NORMAL)
|
| 210 |
+
cv2.imshow(WINDOW_NAME, vis)
|
| 211 |
+
if cv2.waitKey(1) == 27:
|
| 212 |
+
break # esc to quit
|
| 213 |
+
cam.release()
|
| 214 |
+
cv2.destroyAllWindows()
|
| 215 |
+
elif args.video_input:
|
| 216 |
+
video = cv2.VideoCapture(args.video_input)
|
| 217 |
+
width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 218 |
+
height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 219 |
+
frames_per_second = video.get(cv2.CAP_PROP_FPS)
|
| 220 |
+
num_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 221 |
+
basename = os.path.basename(args.video_input)
|
| 222 |
+
codec, file_ext = (
|
| 223 |
+
("x264", ".mkv") if test_opencv_video_format("x264", ".mkv") else ("mp4v", ".mp4")
|
| 224 |
+
)
|
| 225 |
+
codec, file_ext = "mp4v", ".mp4"
|
| 226 |
+
if codec == ".mp4v":
|
| 227 |
+
warnings.warn("x264 codec not available, switching to mp4v")
|
| 228 |
+
if args.output:
|
| 229 |
+
if os.path.isdir(args.output):
|
| 230 |
+
output_fname = os.path.join(args.output, basename)
|
| 231 |
+
output_fname = os.path.splitext(output_fname)[0] + file_ext
|
| 232 |
+
else:
|
| 233 |
+
output_fname = args.output
|
| 234 |
+
assert not os.path.isfile(output_fname), output_fname
|
| 235 |
+
output_file = cv2.VideoWriter(
|
| 236 |
+
filename=output_fname,
|
| 237 |
+
# some installation of opencv may not support x264 (due to its license),
|
| 238 |
+
# you can try other format (e.g. MPEG)
|
| 239 |
+
fourcc=cv2.VideoWriter_fourcc(*codec),
|
| 240 |
+
fps=float(frames_per_second),
|
| 241 |
+
frameSize=(width, height),
|
| 242 |
+
isColor=True,
|
| 243 |
+
)
|
| 244 |
+
# i = 0
|
| 245 |
+
assert os.path.isfile(args.video_input)
|
| 246 |
+
for vis_frame, predictions in tqdm.tqdm(demo.run_on_video(video), total=num_frames):
|
| 247 |
+
if args.output:
|
| 248 |
+
output_file.write(vis_frame)
|
| 249 |
+
|
| 250 |
+
# import pickle
|
| 251 |
+
# with open(output_fname + "." + str(i) + ".pkl", "wb") as outp:
|
| 252 |
+
# pickle.dump(predictions, outp, pickle.HIGHEST_PROTOCOL)
|
| 253 |
+
# i += 1
|
| 254 |
+
else:
|
| 255 |
+
cv2.namedWindow(basename, cv2.WINDOW_NORMAL)
|
| 256 |
+
cv2.imshow(basename, vis_frame)
|
| 257 |
+
if cv2.waitKey(1) == 27:
|
| 258 |
+
break # esc to quit
|
| 259 |
+
video.release()
|
| 260 |
+
if args.output:
|
| 261 |
+
output_file.release()
|
| 262 |
+
else:
|
| 263 |
+
cv2.destroyAllWindows()
|
examples/013_438973263.jpg
ADDED
|
Git LFS Details
|
examples/094_56726435.jpg
ADDED
|
Git LFS Details
|
examples/199_3946193540.jpg
ADDED
|
Git LFS Details
|
examples/MatrixRevolutionForZion.jpg
ADDED
|
Git LFS Details
|
examples/Pisa.jpg
ADDED
|
Git LFS Details
|
examples/SolvayConference1927.jpg
ADDED
|
Git LFS Details
|
examples/Terminator3.jpg
ADDED
|
Git LFS Details
|
examples/TheGreatWall.jpg
ADDED
|
Git LFS Details
|
examples/Totoro01.png
ADDED
|
Git LFS Details
|
examples/Transformers.webp
ADDED
|
Git LFS Details
|
pre-requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
--index-url https://download.pytorch.org/whl/cu118
|
| 2 |
+
torch==2.0.1
|
| 3 |
+
torchvision==0.15.2
|
| 4 |
+
torchaudio==2.0.2
|
predictor_lazy.py
ADDED
|
@@ -0,0 +1,429 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
| 2 |
+
import atexit
|
| 3 |
+
import bisect
|
| 4 |
+
import gc
|
| 5 |
+
import json
|
| 6 |
+
import multiprocessing as mp
|
| 7 |
+
import time
|
| 8 |
+
from collections import deque
|
| 9 |
+
|
| 10 |
+
import cv2
|
| 11 |
+
import numpy as np
|
| 12 |
+
import torch
|
| 13 |
+
|
| 14 |
+
from ape.engine.defaults import DefaultPredictor
|
| 15 |
+
from detectron2.data import MetadataCatalog
|
| 16 |
+
from detectron2.utils.video_visualizer import VideoVisualizer
|
| 17 |
+
from detectron2.utils.visualizer import ColorMode, Visualizer
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
def filter_instances(instances, metadata):
|
| 21 |
+
# return instances
|
| 22 |
+
|
| 23 |
+
keep = []
|
| 24 |
+
keep_classes = []
|
| 25 |
+
|
| 26 |
+
sorted_idxs = np.argsort(-instances.scores)
|
| 27 |
+
instances = instances[sorted_idxs]
|
| 28 |
+
|
| 29 |
+
for i in range(len(instances)):
|
| 30 |
+
instance = instances[i]
|
| 31 |
+
pred_class = instance.pred_classes
|
| 32 |
+
if pred_class >= len(metadata.thing_classes):
|
| 33 |
+
continue
|
| 34 |
+
|
| 35 |
+
keep.append(i)
|
| 36 |
+
keep_classes.append(pred_class)
|
| 37 |
+
return instances[keep]
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
def cuda_grabcut(img, masks, iter=5, gamma=50, iou_threshold=0.75):
|
| 41 |
+
gc.collect()
|
| 42 |
+
torch.cuda.empty_cache()
|
| 43 |
+
|
| 44 |
+
try:
|
| 45 |
+
import grabcut
|
| 46 |
+
except Exception as e:
|
| 47 |
+
print("*" * 60)
|
| 48 |
+
print("fail to import grabCut: ", e)
|
| 49 |
+
print("*" * 60)
|
| 50 |
+
return masks
|
| 51 |
+
GC = grabcut.GrabCut(iter)
|
| 52 |
+
|
| 53 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2BGRA)
|
| 54 |
+
|
| 55 |
+
tic_0 = time.time()
|
| 56 |
+
for i in range(len(masks)):
|
| 57 |
+
mask = masks[i]
|
| 58 |
+
if mask.sum() > 10 * 10:
|
| 59 |
+
pass
|
| 60 |
+
else:
|
| 61 |
+
continue
|
| 62 |
+
|
| 63 |
+
# ----------------------------------------------------------------
|
| 64 |
+
fourmap = np.empty_like(mask, dtype=np.uint8)
|
| 65 |
+
fourmap[:, :] = 64
|
| 66 |
+
fourmap[mask == 0] = 64
|
| 67 |
+
fourmap[mask == 1] = 128
|
| 68 |
+
|
| 69 |
+
# Compute segmentation
|
| 70 |
+
tic = time.time()
|
| 71 |
+
seg = GC.estimateSegmentationFromFourmap(img, fourmap, gamma)
|
| 72 |
+
toc = time.time()
|
| 73 |
+
print("Time elapsed in GrabCut segmentation: " + str(toc - tic))
|
| 74 |
+
# ----------------------------------------------------------------
|
| 75 |
+
|
| 76 |
+
seg = torch.tensor(seg, dtype=torch.bool)
|
| 77 |
+
iou = (mask & seg).sum() / (mask | seg).sum()
|
| 78 |
+
if iou > iou_threshold:
|
| 79 |
+
masks[i] = seg
|
| 80 |
+
|
| 81 |
+
if toc - tic_0 > 10:
|
| 82 |
+
break
|
| 83 |
+
|
| 84 |
+
return masks
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
def opencv_grabcut(img, masks, iter=5):
|
| 88 |
+
|
| 89 |
+
for i in range(len(masks)):
|
| 90 |
+
mask = masks[i]
|
| 91 |
+
|
| 92 |
+
# ----------------------------------------------------------------
|
| 93 |
+
fourmap = np.empty_like(mask, dtype=np.uint8)
|
| 94 |
+
fourmap[:, :] = cv2.GC_PR_BGD
|
| 95 |
+
# fourmap[mask == 0] = cv2.GC_BGD
|
| 96 |
+
fourmap[mask == 0] = cv2.GC_PR_BGD
|
| 97 |
+
fourmap[mask == 1] = cv2.GC_PR_FGD
|
| 98 |
+
# fourmap[mask == 1] = cv2.GC_FGD
|
| 99 |
+
|
| 100 |
+
# Create GrabCut algo
|
| 101 |
+
bgd_model = np.zeros((1, 65), np.float64)
|
| 102 |
+
fgd_model = np.zeros((1, 65), np.float64)
|
| 103 |
+
seg = np.zeros_like(fourmap, dtype=np.uint8)
|
| 104 |
+
|
| 105 |
+
# Compute segmentation
|
| 106 |
+
tic = time.time()
|
| 107 |
+
seg, bgd_model, fgd_model = cv2.grabCut(
|
| 108 |
+
img, fourmap, None, bgd_model, fgd_model, iter, cv2.GC_INIT_WITH_MASK
|
| 109 |
+
)
|
| 110 |
+
toc = time.time()
|
| 111 |
+
print("Time elapsed in GrabCut segmentation: " + str(toc - tic))
|
| 112 |
+
|
| 113 |
+
seg = np.where((seg == 2) | (seg == 0), 0, 1).astype("bool")
|
| 114 |
+
|
| 115 |
+
# ----------------------------------------------------------------
|
| 116 |
+
|
| 117 |
+
seg = torch.tensor(seg, dtype=torch.bool)
|
| 118 |
+
iou = (mask & seg).sum() / (mask | seg).sum()
|
| 119 |
+
if iou > 0.75:
|
| 120 |
+
masks[i] = seg
|
| 121 |
+
|
| 122 |
+
if i > 10:
|
| 123 |
+
break
|
| 124 |
+
|
| 125 |
+
return masks
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
class VisualizationDemo(object):
|
| 129 |
+
def __init__(self, cfg, instance_mode=ColorMode.IMAGE, parallel=False, args=None):
|
| 130 |
+
"""
|
| 131 |
+
Args:
|
| 132 |
+
cfg (CfgNode):
|
| 133 |
+
instance_mode (ColorMode):
|
| 134 |
+
parallel (bool): whether to run the model in different processes from visualization.
|
| 135 |
+
Useful since the visualization logic can be slow.
|
| 136 |
+
"""
|
| 137 |
+
self.metadata = MetadataCatalog.get(
|
| 138 |
+
"__unused_" + "_".join([d for d in cfg.dataloader.train.dataset.names])
|
| 139 |
+
)
|
| 140 |
+
self.metadata.thing_classes = [
|
| 141 |
+
c
|
| 142 |
+
for d in cfg.dataloader.train.dataset.names
|
| 143 |
+
for c in MetadataCatalog.get(d).get("thing_classes", default=[])
|
| 144 |
+
+ MetadataCatalog.get(d).get("stuff_classes", default=["thing"])[1:]
|
| 145 |
+
]
|
| 146 |
+
self.metadata.stuff_classes = [
|
| 147 |
+
c
|
| 148 |
+
for d in cfg.dataloader.train.dataset.names
|
| 149 |
+
for c in MetadataCatalog.get(d).get("thing_classes", default=[])
|
| 150 |
+
+ MetadataCatalog.get(d).get("stuff_classes", default=["thing"])[1:]
|
| 151 |
+
]
|
| 152 |
+
|
| 153 |
+
# self.metadata = MetadataCatalog.get(
|
| 154 |
+
# "__unused_ape_" + "_".join([d for d in cfg.dataloader.train.dataset.names])
|
| 155 |
+
# )
|
| 156 |
+
# self.metadata.thing_classes = [
|
| 157 |
+
# c
|
| 158 |
+
# for d in ["coco_2017_train_panoptic_separated"]
|
| 159 |
+
# for c in MetadataCatalog.get(d).get("thing_classes", default=[])
|
| 160 |
+
# + MetadataCatalog.get(d).get("stuff_classes", default=["thing"])[1:]
|
| 161 |
+
# ]
|
| 162 |
+
# self.metadata.stuff_classes = [
|
| 163 |
+
# c
|
| 164 |
+
# for d in ["coco_2017_train_panoptic_separated"]
|
| 165 |
+
# for c in MetadataCatalog.get(d).get("thing_classes", default=[])
|
| 166 |
+
# + MetadataCatalog.get(d).get("stuff_classes", default=["thing"])[1:]
|
| 167 |
+
# ]
|
| 168 |
+
|
| 169 |
+
self.cpu_device = torch.device("cpu")
|
| 170 |
+
self.instance_mode = instance_mode
|
| 171 |
+
|
| 172 |
+
self.parallel = parallel
|
| 173 |
+
if parallel:
|
| 174 |
+
num_gpu = torch.cuda.device_count()
|
| 175 |
+
self.predictor = AsyncPredictor(cfg, num_gpus=num_gpu)
|
| 176 |
+
else:
|
| 177 |
+
self.predictor = DefaultPredictor(cfg)
|
| 178 |
+
|
| 179 |
+
print(args)
|
| 180 |
+
|
| 181 |
+
def run_on_image(
|
| 182 |
+
self,
|
| 183 |
+
image,
|
| 184 |
+
text_prompt=None,
|
| 185 |
+
mask_prompt=None,
|
| 186 |
+
with_box=True,
|
| 187 |
+
with_mask=True,
|
| 188 |
+
with_sseg=True,
|
| 189 |
+
):
|
| 190 |
+
"""
|
| 191 |
+
Args:
|
| 192 |
+
image (np.ndarray): an image of shape (H, W, C) (in BGR order).
|
| 193 |
+
This is the format used by OpenCV.
|
| 194 |
+
|
| 195 |
+
Returns:
|
| 196 |
+
predictions (dict): the output of the model.
|
| 197 |
+
vis_output (VisImage): the visualized image output.
|
| 198 |
+
"""
|
| 199 |
+
if text_prompt:
|
| 200 |
+
text_list = [x.strip() for x in text_prompt.split(",")]
|
| 201 |
+
text_list = [x for x in text_list if len(x) > 0]
|
| 202 |
+
metadata = MetadataCatalog.get("__unused_ape_" + text_prompt)
|
| 203 |
+
metadata.thing_classes = text_list
|
| 204 |
+
metadata.stuff_classes = text_list
|
| 205 |
+
else:
|
| 206 |
+
metadata = self.metadata
|
| 207 |
+
|
| 208 |
+
vis_output = None
|
| 209 |
+
predictions = self.predictor(image, text_prompt, mask_prompt)
|
| 210 |
+
|
| 211 |
+
if "instances" in predictions:
|
| 212 |
+
predictions["instances"] = filter_instances(
|
| 213 |
+
predictions["instances"].to(self.cpu_device), metadata
|
| 214 |
+
)
|
| 215 |
+
|
| 216 |
+
# Convert image from OpenCV BGR format to Matplotlib RGB format.
|
| 217 |
+
image = image[:, :, ::-1]
|
| 218 |
+
visualizer = Visualizer(image, metadata, instance_mode=self.instance_mode)
|
| 219 |
+
vis_outputs = []
|
| 220 |
+
if "panoptic_seg" in predictions and with_mask and with_sseg:
|
| 221 |
+
panoptic_seg, segments_info = predictions["panoptic_seg"]
|
| 222 |
+
vis_output = visualizer.draw_panoptic_seg_predictions(
|
| 223 |
+
panoptic_seg.to(self.cpu_device), segments_info
|
| 224 |
+
)
|
| 225 |
+
else:
|
| 226 |
+
if "sem_seg" in predictions and with_sseg:
|
| 227 |
+
# vis_output = visualizer.draw_sem_seg(
|
| 228 |
+
# predictions["sem_seg"].argmax(dim=0).to(self.cpu_device)
|
| 229 |
+
# )
|
| 230 |
+
|
| 231 |
+
sem_seg = predictions["sem_seg"].to(self.cpu_device)
|
| 232 |
+
# sem_seg = opencv_grabcut(image, sem_seg, iter=10)
|
| 233 |
+
# sem_seg = cuda_grabcut(image, sem_seg > 0.5, iter=5, gamma=10, iou_threshold=0.1)
|
| 234 |
+
sem_seg = torch.cat((sem_seg, torch.ones_like(sem_seg[0:1, ...]) * 0.1), dim=0)
|
| 235 |
+
sem_seg = sem_seg.argmax(dim=0)
|
| 236 |
+
vis_output = visualizer.draw_sem_seg(sem_seg)
|
| 237 |
+
if "instances" in predictions and (with_box or with_mask):
|
| 238 |
+
instances = predictions["instances"].to(self.cpu_device)
|
| 239 |
+
|
| 240 |
+
if not with_box:
|
| 241 |
+
instances.remove("pred_boxes")
|
| 242 |
+
if not with_mask:
|
| 243 |
+
instances.remove("pred_masks")
|
| 244 |
+
|
| 245 |
+
if with_mask and False:
|
| 246 |
+
# instances.pred_masks = opencv_grabcut(image, instances.pred_masks, iter=10)
|
| 247 |
+
instances.pred_masks = cuda_grabcut(
|
| 248 |
+
image, instances.pred_masks, iter=5, gamma=10, iou_threshold=0.75
|
| 249 |
+
)
|
| 250 |
+
|
| 251 |
+
vis_output = visualizer.draw_instance_predictions(predictions=instances)
|
| 252 |
+
|
| 253 |
+
# for i in range(len(instances)):
|
| 254 |
+
# visualizer = Visualizer(image, metadata, instance_mode=self.instance_mode)
|
| 255 |
+
# vis_outputs.append(visualizer.draw_instance_predictions(predictions=instances[i]))
|
| 256 |
+
|
| 257 |
+
elif "proposals" in predictions:
|
| 258 |
+
visualizer = Visualizer(image, None, instance_mode=self.instance_mode)
|
| 259 |
+
instances = predictions["proposals"].to(self.cpu_device)
|
| 260 |
+
instances.pred_boxes = instances.proposal_boxes
|
| 261 |
+
instances.scores = instances.objectness_logits
|
| 262 |
+
vis_output = visualizer.draw_instance_predictions(predictions=instances)
|
| 263 |
+
|
| 264 |
+
return predictions, vis_output, vis_outputs, metadata
|
| 265 |
+
|
| 266 |
+
def _frame_from_video(self, video):
|
| 267 |
+
while video.isOpened():
|
| 268 |
+
success, frame = video.read()
|
| 269 |
+
if success:
|
| 270 |
+
yield frame
|
| 271 |
+
else:
|
| 272 |
+
break
|
| 273 |
+
|
| 274 |
+
def run_on_video(self, video):
|
| 275 |
+
"""
|
| 276 |
+
Visualizes predictions on frames of the input video.
|
| 277 |
+
|
| 278 |
+
Args:
|
| 279 |
+
video (cv2.VideoCapture): a :class:`VideoCapture` object, whose source can be
|
| 280 |
+
either a webcam or a video file.
|
| 281 |
+
|
| 282 |
+
Yields:
|
| 283 |
+
ndarray: BGR visualizations of each video frame.
|
| 284 |
+
"""
|
| 285 |
+
video_visualizer = VideoVisualizer(self.metadata, self.instance_mode)
|
| 286 |
+
|
| 287 |
+
def process_predictions(frame, predictions):
|
| 288 |
+
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 289 |
+
if "panoptic_seg" in predictions and False:
|
| 290 |
+
panoptic_seg, segments_info = predictions["panoptic_seg"]
|
| 291 |
+
vis_frame = video_visualizer.draw_panoptic_seg_predictions(
|
| 292 |
+
frame, panoptic_seg.to(self.cpu_device), segments_info
|
| 293 |
+
)
|
| 294 |
+
elif "instances" in predictions and False:
|
| 295 |
+
predictions = predictions["instances"].to(self.cpu_device)
|
| 296 |
+
vis_frame = video_visualizer.draw_instance_predictions(frame, predictions)
|
| 297 |
+
elif "sem_seg" in predictions and False:
|
| 298 |
+
vis_frame = video_visualizer.draw_sem_seg(
|
| 299 |
+
frame, predictions["sem_seg"].argmax(dim=0).to(self.cpu_device)
|
| 300 |
+
)
|
| 301 |
+
|
| 302 |
+
if "sem_seg" in predictions:
|
| 303 |
+
vis_frame = video_visualizer.draw_sem_seg(
|
| 304 |
+
frame, predictions["sem_seg"].argmax(dim=0).to(self.cpu_device)
|
| 305 |
+
)
|
| 306 |
+
frame = vis_frame.get_image()
|
| 307 |
+
|
| 308 |
+
if "instances" in predictions:
|
| 309 |
+
predictions = predictions["instances"].to(self.cpu_device)
|
| 310 |
+
predictions = filter_instances(predictions, self.metadata)
|
| 311 |
+
vis_frame = video_visualizer.draw_instance_predictions(frame, predictions)
|
| 312 |
+
|
| 313 |
+
# Converts Matplotlib RGB format to OpenCV BGR format
|
| 314 |
+
vis_frame = cv2.cvtColor(vis_frame.get_image(), cv2.COLOR_RGB2BGR)
|
| 315 |
+
return vis_frame, predictions
|
| 316 |
+
|
| 317 |
+
frame_gen = self._frame_from_video(video)
|
| 318 |
+
if self.parallel:
|
| 319 |
+
buffer_size = self.predictor.default_buffer_size
|
| 320 |
+
|
| 321 |
+
frame_data = deque()
|
| 322 |
+
|
| 323 |
+
for cnt, frame in enumerate(frame_gen):
|
| 324 |
+
frame_data.append(frame)
|
| 325 |
+
self.predictor.put(frame)
|
| 326 |
+
|
| 327 |
+
if cnt >= buffer_size:
|
| 328 |
+
frame = frame_data.popleft()
|
| 329 |
+
predictions = self.predictor.get()
|
| 330 |
+
yield process_predictions(frame, predictions)
|
| 331 |
+
|
| 332 |
+
while len(frame_data):
|
| 333 |
+
frame = frame_data.popleft()
|
| 334 |
+
predictions = self.predictor.get()
|
| 335 |
+
yield process_predictions(frame, predictions)
|
| 336 |
+
else:
|
| 337 |
+
for frame in frame_gen:
|
| 338 |
+
yield process_predictions(frame, self.predictor(frame))
|
| 339 |
+
|
| 340 |
+
|
| 341 |
+
class AsyncPredictor:
|
| 342 |
+
"""
|
| 343 |
+
A predictor that runs the model asynchronously, possibly on >1 GPUs.
|
| 344 |
+
Because rendering the visualization takes considerably amount of time,
|
| 345 |
+
this helps improve throughput a little bit when rendering videos.
|
| 346 |
+
"""
|
| 347 |
+
|
| 348 |
+
class _StopToken:
|
| 349 |
+
pass
|
| 350 |
+
|
| 351 |
+
class _PredictWorker(mp.Process):
|
| 352 |
+
def __init__(self, cfg, task_queue, result_queue):
|
| 353 |
+
self.cfg = cfg
|
| 354 |
+
self.task_queue = task_queue
|
| 355 |
+
self.result_queue = result_queue
|
| 356 |
+
super().__init__()
|
| 357 |
+
|
| 358 |
+
def run(self):
|
| 359 |
+
predictor = DefaultPredictor(self.cfg)
|
| 360 |
+
|
| 361 |
+
while True:
|
| 362 |
+
task = self.task_queue.get()
|
| 363 |
+
if isinstance(task, AsyncPredictor._StopToken):
|
| 364 |
+
break
|
| 365 |
+
idx, data = task
|
| 366 |
+
result = predictor(data)
|
| 367 |
+
self.result_queue.put((idx, result))
|
| 368 |
+
|
| 369 |
+
def __init__(self, cfg, num_gpus: int = 1):
|
| 370 |
+
"""
|
| 371 |
+
Args:
|
| 372 |
+
cfg (CfgNode):
|
| 373 |
+
num_gpus (int): if 0, will run on CPU
|
| 374 |
+
"""
|
| 375 |
+
num_workers = max(num_gpus, 1)
|
| 376 |
+
self.task_queue = mp.Queue(maxsize=num_workers * 3)
|
| 377 |
+
self.result_queue = mp.Queue(maxsize=num_workers * 3)
|
| 378 |
+
self.procs = []
|
| 379 |
+
for gpuid in range(max(num_gpus, 1)):
|
| 380 |
+
cfg = cfg.clone()
|
| 381 |
+
cfg.defrost()
|
| 382 |
+
cfg.MODEL.DEVICE = "cuda:{}".format(gpuid) if num_gpus > 0 else "cpu"
|
| 383 |
+
self.procs.append(
|
| 384 |
+
AsyncPredictor._PredictWorker(cfg, self.task_queue, self.result_queue)
|
| 385 |
+
)
|
| 386 |
+
|
| 387 |
+
self.put_idx = 0
|
| 388 |
+
self.get_idx = 0
|
| 389 |
+
self.result_rank = []
|
| 390 |
+
self.result_data = []
|
| 391 |
+
|
| 392 |
+
for p in self.procs:
|
| 393 |
+
p.start()
|
| 394 |
+
atexit.register(self.shutdown)
|
| 395 |
+
|
| 396 |
+
def put(self, image):
|
| 397 |
+
self.put_idx += 1
|
| 398 |
+
self.task_queue.put((self.put_idx, image))
|
| 399 |
+
|
| 400 |
+
def get(self):
|
| 401 |
+
self.get_idx += 1 # the index needed for this request
|
| 402 |
+
if len(self.result_rank) and self.result_rank[0] == self.get_idx:
|
| 403 |
+
res = self.result_data[0]
|
| 404 |
+
del self.result_data[0], self.result_rank[0]
|
| 405 |
+
return res
|
| 406 |
+
|
| 407 |
+
while True:
|
| 408 |
+
# make sure the results are returned in the correct order
|
| 409 |
+
idx, res = self.result_queue.get()
|
| 410 |
+
if idx == self.get_idx:
|
| 411 |
+
return res
|
| 412 |
+
insert = bisect.bisect(self.result_rank, idx)
|
| 413 |
+
self.result_rank.insert(insert, idx)
|
| 414 |
+
self.result_data.insert(insert, res)
|
| 415 |
+
|
| 416 |
+
def __len__(self):
|
| 417 |
+
return self.put_idx - self.get_idx
|
| 418 |
+
|
| 419 |
+
def __call__(self, image):
|
| 420 |
+
self.put(image)
|
| 421 |
+
return self.get()
|
| 422 |
+
|
| 423 |
+
def shutdown(self):
|
| 424 |
+
for _ in self.procs:
|
| 425 |
+
self.task_queue.put(AsyncPredictor._StopToken())
|
| 426 |
+
|
| 427 |
+
@property
|
| 428 |
+
def default_buffer_size(self):
|
| 429 |
+
return len(self.procs) * 5
|
requirements.txt
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
transformers
|
| 2 |
+
cython
|
| 3 |
+
opencv-python
|
| 4 |
+
scipy
|
| 5 |
+
einops
|
| 6 |
+
lvis
|
| 7 |
+
fairscale
|
| 8 |
+
git+https://github.com/facebookresearch/detectron2@017abbf
|
| 9 |
+
git+https://github.com/IDEA-Research/detrex@776058e
|
| 10 |
+
git+https://github.com/openai/CLIP.git@d50d76d
|
| 11 |
+
git+https://github.com/shenyunhang/ape
|