seddiktrk's picture
Update app.py
ffe3d95 verified
import streamlit as st
from PIL import Image
import time
from tqdm.auto import tqdm
import numpy as np
import torch
from torch import nn
print(torch.__version__)
device = torch.device('cpu')
print(device)
print('importing tokenizer')
from transformers import GPT2Tokenizer,GPT2LMHeadModel,DataCollatorWithPadding
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
tokenizer.pad_token_id = 0
collator = DataCollatorWithPadding(tokenizer = tokenizer)
class EncoderAttention(nn.Module):
def __init__(self,embed_dim=768, num_heads=8, dropout=0.1):
super().__init__()
self.mha = nn.MultiheadAttention(embed_dim, num_heads,batch_first=True, dropout=dropout)
self.layernorm = nn.LayerNorm(embed_dim)
def forward(self,x):
attn, _ = self.mha(query=x,
value=x,
key=x,
need_weights=False,
)
x = x + attn
return self.layernorm(x)
class FeedForward(nn.Module):
def __init__(self, embed_dim=768, dropout_rate=0.1):
super().__init__()
self.seq = nn.Sequential(
nn.Linear(embed_dim, embed_dim*2),
nn.ReLU(),
nn.Linear(embed_dim*2, embed_dim),
nn.Dropout(dropout_rate)
)
self.layernorm = nn.LayerNorm(embed_dim)
def forward(self, x):
x = x + self.seq(x)
return self.layernorm(x)
class MapperLayer(nn.Module):
def __init__(self, embed_dim=768, num_heads=8, dropout_rate=0.1):
super().__init__()
self.attn = EncoderAttention( num_heads=num_heads,
embed_dim=embed_dim,
dropout=dropout_rate)
self.ff = FeedForward(embed_dim=embed_dim,
dropout_rate=dropout_rate)
def forward(self, x):
x = self.attn(x)
x = self.ff(x)
return x
class Transformer(nn.Module):
def __init__(self,
num_layers=8,
num_heads=8,
embed_dim=768,
dropout_rate=0.1
):
super().__init__()
layers = [MapperLayer(embed_dim=embed_dim,
num_heads=num_heads,
dropout_rate=dropout_rate) for i in range(num_layers)]
self.layers = nn.ModuleList(layers)
def forward(self,x):
for layer in self.layers:
x = layer(x)
return x
class TransformerMapper(nn.Module):
def forward(self, x):
x = self.linear(x).view(x.shape[0], self.clip_length, -1)
prefix = self.prefix_const.unsqueeze(0).expand(x.shape[0], *self.prefix_const.shape) # (B,prefix_len,embed_dim)
prefix = torch.cat((x, prefix), dim=1)
return self.transformer(prefix)[:, self.clip_length:]
def __init__(self,
dim_clip = 768,
embed_dim = 768,
prefix_length = 16,
clip_length = 10,
num_layers = 8,
num_heads = 8,
dropout_rate = 0.1
):
super().__init__()
self.clip_length = clip_length
self.transformer = Transformer(
num_layers=num_layers,
num_heads=num_heads,
embed_dim=embed_dim,
dropout_rate=dropout_rate
)
self.linear = nn.Linear(dim_clip, self.clip_length * embed_dim) # CLIP prefixes (clip_length prefixes) (B,clip_len*768)
self.prefix_const = nn.Parameter(torch.randn(prefix_length, embed_dim), requires_grad=True)
class ClipCaptionModel(nn.Module):
def get_dummy_token(self, batch_size: int, device: torch.device) -> torch.Tensor:
return torch.zeros(batch_size, self.prefix_length, dtype=torch.int64, device=device)
def forward(self,
tokens: torch.Tensor,
prefix: torch.Tensor,
mask: torch.Tensor,
labels=None):
# create embeddings for the gpt model
embedding_text = self.gpt.transformer.wte(tokens)
prefix_projections = self.clip_project(prefix)
embedding_cat = torch.cat((prefix_projections, embedding_text), dim=1)
# prepare mask
if mask.shape[1] != embedding_cat.shape[1]:
dummy_mask = torch.ones(tokens.shape[0],self.prefix_length, dtype=torch.int64, device=mask.device)
mask = torch.cat([dummy_mask,mask],dim=1)
return self.gpt(inputs_embeds=embedding_cat,
labels=labels,
attention_mask=mask)
def __init__(self,
dim_clip = 768,
embed_dim = 768,
prefix_length = 16,
clip_length = 10,
num_layers = 8,
num_heads = 8,
dropout_rate = 0.1,
):
super().__init__()
self.prefix_length = prefix_length
self.gpt = GPT2LMHeadModel.from_pretrained('gpt2')
self.gpt_embedding_size = self.gpt.transformer.wte.weight.shape[1]
self.clip_project = TransformerMapper(
dim_clip = dim_clip,
embed_dim = self.gpt_embedding_size,
prefix_length = prefix_length,
clip_length = clip_length,
num_layers = num_layers,
num_heads = num_heads,
dropout_rate = dropout_rate)
print('loading model')
print()
## Prepare Model
CliPGPT = ClipCaptionModel()
path = "model_epoch_1_loss_2.0695.pt"
state_dict = torch.load(path,map_location=torch.device('cpu'))
# Apply the weights to the model
CliPGPT.load_state_dict(state_dict)
CliPGPT.to(device)
print('importing CLIP')
from transformers import CLIPProcessor, CLIPModel
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32").to(device)
model.eval()
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
def sample_from_logits(logits, temperature=0.3):
logits = logits / temperature
probabilities = torch.softmax(logits, dim=-1)
return torch.multinomial(probabilities, 1).squeeze()
def generate(image,
device=device,
max_tokens=48,
temperature=0.5,
verbose=True,
sample=True,
):
model.to(device)
CliPGPT.to(device)
# encode image
with torch.inference_mode():
input = torch.tensor(np.stack(processor.image_processor(image).pixel_values,axis=0)).to(device)
embeds = model.vision_model(input)
embeds = embeds.pooler_output
CliPGPT.eval()
prefix_length = CliPGPT.prefix_length
# prepare initial token '#' used as token to begin generation of caption
tokens = ['#']
input_ids,attention_mask = collator(tokenizer(tokens)).values()
# forward pass
for i in tqdm(range(max_tokens),desc='generating... '):
input_ids = input_ids.to(device)
embeds = embeds.to(device)
attention_mask = attention_mask.to(device)
with torch.inference_mode():
out = CliPGPT(
tokens= input_ids,
prefix= embeds,
mask= attention_mask,
)
logits = out.logits
logits = logits[:,prefix_length:,:]
# Sampling Technique
if sample:
next_token = sample_from_logits(logits[:, -1, :],
temperature=temperature)
else:
next_token = torch.argmax(logits[:,-1,:],dim=-1).squeeze()
token = next_token.item()
if token == tokenizer.eos_token_id:
break
# update string
tokens = [tokens[0] + tokenizer.decode(next_token)]
# update tokens
input_ids,attention_mask = collator(tokenizer(tokens)).values()
if verbose:
print(token)
print(tokens[0])
print()
return tokens[0].replace('#','').strip()
print('app starts')
st.title("CLIP GPT2 Image Captionning")
st.write("This is a web app for generating captions for images using a model built with CLIP & GPT2.")
# Image upload section
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "png", "jpeg"])
if uploaded_file is not None:
# Display the uploaded image
image = Image.open(uploaded_file)
st.image(image, caption='Uploaded Image', use_column_width=True)
# Generate caption button
if st.button('Submit'):
with st.spinner('Generating caption...'):
start_time = time.time()
caption = generate(image)
end_time = time.time()
st.text_area('Output', caption)
st.write(f"Inference time: {end_time - start_time:.2f} seconds")