|
import streamlit as st |
|
from PIL import Image |
|
import time |
|
|
|
from tqdm.auto import tqdm |
|
import numpy as np |
|
import torch |
|
from torch import nn |
|
print(torch.__version__) |
|
device = torch.device('cpu') |
|
print(device) |
|
|
|
print('importing tokenizer') |
|
from transformers import GPT2Tokenizer,GPT2LMHeadModel,DataCollatorWithPadding |
|
|
|
tokenizer = GPT2Tokenizer.from_pretrained('gpt2') |
|
tokenizer.pad_token_id = 0 |
|
collator = DataCollatorWithPadding(tokenizer = tokenizer) |
|
|
|
class EncoderAttention(nn.Module): |
|
def __init__(self,embed_dim=768, num_heads=8, dropout=0.1): |
|
super().__init__() |
|
self.mha = nn.MultiheadAttention(embed_dim, num_heads,batch_first=True, dropout=dropout) |
|
self.layernorm = nn.LayerNorm(embed_dim) |
|
|
|
def forward(self,x): |
|
|
|
attn, _ = self.mha(query=x, |
|
value=x, |
|
key=x, |
|
need_weights=False, |
|
) |
|
x = x + attn |
|
return self.layernorm(x) |
|
|
|
|
|
class FeedForward(nn.Module): |
|
def __init__(self, embed_dim=768, dropout_rate=0.1): |
|
super().__init__() |
|
self.seq = nn.Sequential( |
|
nn.Linear(embed_dim, embed_dim*2), |
|
nn.ReLU(), |
|
nn.Linear(embed_dim*2, embed_dim), |
|
nn.Dropout(dropout_rate) |
|
) |
|
|
|
self.layernorm = nn.LayerNorm(embed_dim) |
|
|
|
def forward(self, x): |
|
x = x + self.seq(x) |
|
return self.layernorm(x) |
|
|
|
|
|
class MapperLayer(nn.Module): |
|
def __init__(self, embed_dim=768, num_heads=8, dropout_rate=0.1): |
|
super().__init__() |
|
|
|
self.attn = EncoderAttention( num_heads=num_heads, |
|
embed_dim=embed_dim, |
|
dropout=dropout_rate) |
|
self.ff = FeedForward(embed_dim=embed_dim, |
|
dropout_rate=dropout_rate) |
|
|
|
def forward(self, x): |
|
x = self.attn(x) |
|
x = self.ff(x) |
|
return x |
|
|
|
|
|
class Transformer(nn.Module): |
|
def __init__(self, |
|
num_layers=8, |
|
num_heads=8, |
|
embed_dim=768, |
|
dropout_rate=0.1 |
|
): |
|
super().__init__() |
|
|
|
layers = [MapperLayer(embed_dim=embed_dim, |
|
num_heads=num_heads, |
|
dropout_rate=dropout_rate) for i in range(num_layers)] |
|
self.layers = nn.ModuleList(layers) |
|
|
|
|
|
def forward(self,x): |
|
for layer in self.layers: |
|
x = layer(x) |
|
return x |
|
|
|
class TransformerMapper(nn.Module): |
|
|
|
def forward(self, x): |
|
x = self.linear(x).view(x.shape[0], self.clip_length, -1) |
|
prefix = self.prefix_const.unsqueeze(0).expand(x.shape[0], *self.prefix_const.shape) |
|
prefix = torch.cat((x, prefix), dim=1) |
|
return self.transformer(prefix)[:, self.clip_length:] |
|
|
|
|
|
def __init__(self, |
|
dim_clip = 768, |
|
embed_dim = 768, |
|
prefix_length = 16, |
|
clip_length = 10, |
|
num_layers = 8, |
|
num_heads = 8, |
|
dropout_rate = 0.1 |
|
): |
|
super().__init__() |
|
self.clip_length = clip_length |
|
self.transformer = Transformer( |
|
num_layers=num_layers, |
|
num_heads=num_heads, |
|
embed_dim=embed_dim, |
|
dropout_rate=dropout_rate |
|
) |
|
self.linear = nn.Linear(dim_clip, self.clip_length * embed_dim) |
|
self.prefix_const = nn.Parameter(torch.randn(prefix_length, embed_dim), requires_grad=True) |
|
|
|
class ClipCaptionModel(nn.Module): |
|
|
|
def get_dummy_token(self, batch_size: int, device: torch.device) -> torch.Tensor: |
|
return torch.zeros(batch_size, self.prefix_length, dtype=torch.int64, device=device) |
|
|
|
def forward(self, |
|
tokens: torch.Tensor, |
|
prefix: torch.Tensor, |
|
mask: torch.Tensor, |
|
labels=None): |
|
|
|
embedding_text = self.gpt.transformer.wte(tokens) |
|
prefix_projections = self.clip_project(prefix) |
|
embedding_cat = torch.cat((prefix_projections, embedding_text), dim=1) |
|
|
|
|
|
if mask.shape[1] != embedding_cat.shape[1]: |
|
dummy_mask = torch.ones(tokens.shape[0],self.prefix_length, dtype=torch.int64, device=mask.device) |
|
mask = torch.cat([dummy_mask,mask],dim=1) |
|
|
|
|
|
return self.gpt(inputs_embeds=embedding_cat, |
|
labels=labels, |
|
attention_mask=mask) |
|
|
|
|
|
def __init__(self, |
|
dim_clip = 768, |
|
embed_dim = 768, |
|
prefix_length = 16, |
|
clip_length = 10, |
|
num_layers = 8, |
|
num_heads = 8, |
|
dropout_rate = 0.1, |
|
): |
|
super().__init__() |
|
self.prefix_length = prefix_length |
|
self.gpt = GPT2LMHeadModel.from_pretrained('gpt2') |
|
self.gpt_embedding_size = self.gpt.transformer.wte.weight.shape[1] |
|
self.clip_project = TransformerMapper( |
|
dim_clip = dim_clip, |
|
embed_dim = self.gpt_embedding_size, |
|
prefix_length = prefix_length, |
|
clip_length = clip_length, |
|
num_layers = num_layers, |
|
num_heads = num_heads, |
|
dropout_rate = dropout_rate) |
|
|
|
|
|
print('loading model') |
|
print() |
|
|
|
CliPGPT = ClipCaptionModel() |
|
path = "model_epoch_1_loss_2.0695.pt" |
|
state_dict = torch.load(path,map_location=torch.device('cpu')) |
|
|
|
|
|
CliPGPT.load_state_dict(state_dict) |
|
CliPGPT.to(device) |
|
|
|
print('importing CLIP') |
|
from transformers import CLIPProcessor, CLIPModel |
|
|
|
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32").to(device) |
|
model.eval() |
|
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32") |
|
|
|
def sample_from_logits(logits, temperature=0.3): |
|
logits = logits / temperature |
|
probabilities = torch.softmax(logits, dim=-1) |
|
return torch.multinomial(probabilities, 1).squeeze() |
|
|
|
def generate(image, |
|
device=device, |
|
max_tokens=48, |
|
temperature=0.5, |
|
verbose=True, |
|
sample=True, |
|
): |
|
model.to(device) |
|
CliPGPT.to(device) |
|
|
|
with torch.inference_mode(): |
|
input = torch.tensor(np.stack(processor.image_processor(image).pixel_values,axis=0)).to(device) |
|
embeds = model.vision_model(input) |
|
embeds = embeds.pooler_output |
|
|
|
CliPGPT.eval() |
|
prefix_length = CliPGPT.prefix_length |
|
|
|
|
|
tokens = ['#'] |
|
input_ids,attention_mask = collator(tokenizer(tokens)).values() |
|
|
|
|
|
for i in tqdm(range(max_tokens),desc='generating... '): |
|
|
|
input_ids = input_ids.to(device) |
|
embeds = embeds.to(device) |
|
attention_mask = attention_mask.to(device) |
|
|
|
with torch.inference_mode(): |
|
out = CliPGPT( |
|
tokens= input_ids, |
|
prefix= embeds, |
|
mask= attention_mask, |
|
) |
|
logits = out.logits |
|
logits = logits[:,prefix_length:,:] |
|
|
|
|
|
if sample: |
|
next_token = sample_from_logits(logits[:, -1, :], |
|
temperature=temperature) |
|
else: |
|
next_token = torch.argmax(logits[:,-1,:],dim=-1).squeeze() |
|
token = next_token.item() |
|
|
|
if token == tokenizer.eos_token_id: |
|
break |
|
|
|
tokens = [tokens[0] + tokenizer.decode(next_token)] |
|
|
|
input_ids,attention_mask = collator(tokenizer(tokens)).values() |
|
|
|
if verbose: |
|
print(token) |
|
print(tokens[0]) |
|
print() |
|
return tokens[0].replace('#','').strip() |
|
|
|
|
|
print('app starts') |
|
st.title("CLIP GPT2 Image Captionning") |
|
st.write("This is a web app for generating captions for images using a model built with CLIP & GPT2.") |
|
|
|
|
|
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "png", "jpeg"]) |
|
|
|
if uploaded_file is not None: |
|
|
|
image = Image.open(uploaded_file) |
|
st.image(image, caption='Uploaded Image', use_column_width=True) |
|
|
|
|
|
if st.button('Submit'): |
|
with st.spinner('Generating caption...'): |
|
start_time = time.time() |
|
caption = generate(image) |
|
end_time = time.time() |
|
|
|
st.text_area('Output', caption) |
|
st.write(f"Inference time: {end_time - start_time:.2f} seconds") |
|
|