File size: 8,845 Bytes
308ef29
 
 
 
 
 
19b020d
308ef29
 
461eee5
308ef29
 
4a09c08
308ef29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a09c08
308ef29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a09c08
461eee5
308ef29
 
0aa5621
0536626
308ef29
 
461eee5
308ef29
 
4a09c08
308ef29
 
 
 
 
 
 
 
 
 
 
 
 
 
ffe3d95
308ef29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a09c08
308ef29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import streamlit as st
from PIL import Image
import time

from tqdm.auto import tqdm
import numpy as np
import torch
from torch import nn
print(torch.__version__)
device = torch.device('cpu')
print(device)

print('importing tokenizer')
from transformers import GPT2Tokenizer,GPT2LMHeadModel,DataCollatorWithPadding

tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
tokenizer.pad_token_id = 0
collator = DataCollatorWithPadding(tokenizer = tokenizer)

class EncoderAttention(nn.Module):
  def __init__(self,embed_dim=768, num_heads=8, dropout=0.1):
    super().__init__()
    self.mha = nn.MultiheadAttention(embed_dim, num_heads,batch_first=True, dropout=dropout)
    self.layernorm = nn.LayerNorm(embed_dim)

  def forward(self,x):

    attn, _ = self.mha(query=x,
                       value=x,
                       key=x,
                       need_weights=False,
                       )
    x = x + attn
    return self.layernorm(x)


class FeedForward(nn.Module):
  def __init__(self, embed_dim=768, dropout_rate=0.1):
    super().__init__()
    self.seq = nn.Sequential(
        nn.Linear(embed_dim, embed_dim*2),
        nn.ReLU(),
        nn.Linear(embed_dim*2, embed_dim),
        nn.Dropout(dropout_rate)
    )

    self.layernorm = nn.LayerNorm(embed_dim)

  def forward(self, x):
    x = x + self.seq(x)
    return self.layernorm(x)


class MapperLayer(nn.Module):
  def __init__(self, embed_dim=768, num_heads=8, dropout_rate=0.1):
    super().__init__()

    self.attn = EncoderAttention( num_heads=num_heads,
                                  embed_dim=embed_dim,
                                  dropout=dropout_rate)
    self.ff = FeedForward(embed_dim=embed_dim,
                          dropout_rate=dropout_rate)

  def forward(self, x):
    x = self.attn(x)
    x = self.ff(x)
    return x


class Transformer(nn.Module):
    def __init__(self,
               num_layers=8,
               num_heads=8,
               embed_dim=768,
               dropout_rate=0.1
               ):
        super().__init__()

        layers = [MapperLayer(embed_dim=embed_dim,
                              num_heads=num_heads,
                              dropout_rate=dropout_rate) for i in range(num_layers)]
        self.layers = nn.ModuleList(layers)


    def forward(self,x):
      for layer in self.layers:
        x = layer(x)
      return x

class TransformerMapper(nn.Module):

    def forward(self, x):
        x = self.linear(x).view(x.shape[0], self.clip_length, -1)
        prefix = self.prefix_const.unsqueeze(0).expand(x.shape[0], *self.prefix_const.shape) # (B,prefix_len,embed_dim)
        prefix = torch.cat((x, prefix), dim=1)
        return self.transformer(prefix)[:, self.clip_length:]


    def __init__(self,
                 dim_clip = 768,
                 embed_dim = 768,
                 prefix_length = 16,
                 clip_length = 10,
                 num_layers = 8,
                 num_heads = 8,
                 dropout_rate = 0.1
                 ):
        super().__init__()
        self.clip_length = clip_length
        self.transformer = Transformer(
                            num_layers=num_layers,
                            num_heads=num_heads,
                            embed_dim=embed_dim,
                            dropout_rate=dropout_rate
                            )
        self.linear = nn.Linear(dim_clip, self.clip_length * embed_dim) # CLIP prefixes (clip_length prefixes) (B,clip_len*768)
        self.prefix_const = nn.Parameter(torch.randn(prefix_length, embed_dim), requires_grad=True)

class ClipCaptionModel(nn.Module):

    def get_dummy_token(self, batch_size: int, device: torch.device) -> torch.Tensor:
        return torch.zeros(batch_size, self.prefix_length, dtype=torch.int64, device=device)

    def forward(self,
                tokens: torch.Tensor,
                prefix: torch.Tensor,
                mask:   torch.Tensor,
                labels=None):
        # create embeddings for the gpt model
        embedding_text = self.gpt.transformer.wte(tokens)
        prefix_projections = self.clip_project(prefix)
        embedding_cat = torch.cat((prefix_projections, embedding_text), dim=1)

        # prepare mask
        if mask.shape[1] != embedding_cat.shape[1]:
            dummy_mask = torch.ones(tokens.shape[0],self.prefix_length, dtype=torch.int64, device=mask.device)
            mask = torch.cat([dummy_mask,mask],dim=1)


        return self.gpt(inputs_embeds=embedding_cat,
                       labels=labels,
                       attention_mask=mask)


    def __init__(self,
                 dim_clip = 768,
                 embed_dim = 768,
                 prefix_length = 16,
                 clip_length = 10,
                 num_layers = 8,
                 num_heads = 8,
                 dropout_rate = 0.1,
                 ):
        super().__init__()
        self.prefix_length = prefix_length
        self.gpt = GPT2LMHeadModel.from_pretrained('gpt2')
        self.gpt_embedding_size = self.gpt.transformer.wte.weight.shape[1]
        self.clip_project = TransformerMapper(
                 dim_clip = dim_clip,
                 embed_dim = self.gpt_embedding_size,
                 prefix_length = prefix_length,
                 clip_length = clip_length,
                 num_layers = num_layers,
                 num_heads = num_heads,
                 dropout_rate = dropout_rate)


print('loading model')
print()
## Prepare Model
CliPGPT = ClipCaptionModel()
path = "model_epoch_1_loss_2.0695.pt"
state_dict = torch.load(path,map_location=torch.device('cpu'))

# Apply the weights to the model
CliPGPT.load_state_dict(state_dict)
CliPGPT.to(device)

print('importing CLIP')
from transformers import CLIPProcessor, CLIPModel

model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32").to(device)
model.eval()
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")

def sample_from_logits(logits, temperature=0.3):
    logits = logits / temperature
    probabilities = torch.softmax(logits, dim=-1)
    return torch.multinomial(probabilities, 1).squeeze()

def generate(image,
             device=device,
             max_tokens=48,
             temperature=0.5,
             verbose=True,
             sample=True,
             ):
      model.to(device)
      CliPGPT.to(device)
      # encode image
      with torch.inference_mode():
            input = torch.tensor(np.stack(processor.image_processor(image).pixel_values,axis=0)).to(device)
            embeds = model.vision_model(input)
      embeds = embeds.pooler_output

      CliPGPT.eval()
      prefix_length = CliPGPT.prefix_length

      # prepare initial token '#' used as token to begin generation of caption
      tokens = ['#']
      input_ids,attention_mask = collator(tokenizer(tokens)).values()

      # forward pass
      for i in tqdm(range(max_tokens),desc='generating... '):

          input_ids = input_ids.to(device)
          embeds = embeds.to(device)
          attention_mask = attention_mask.to(device)

          with torch.inference_mode():
              out = CliPGPT(
                          tokens= input_ids,
                          prefix= embeds,
                          mask=   attention_mask,
              )
              logits = out.logits
              logits = logits[:,prefix_length:,:]

          # Sampling Technique
          if sample:
            next_token = sample_from_logits(logits[:, -1, :],
                                            temperature=temperature)
          else:
            next_token = torch.argmax(logits[:,-1,:],dim=-1).squeeze()
          token = next_token.item()

          if token == tokenizer.eos_token_id:
            break
          # update string
          tokens = [tokens[0] + tokenizer.decode(next_token)]
          # update tokens
          input_ids,attention_mask = collator(tokenizer(tokens)).values()

          if verbose:
            print(token)
            print(tokens[0])
            print()
      return tokens[0].replace('#','').strip()


print('app starts')
st.title("CLIP GPT2 Image Captionning")
st.write("This is a web app for generating captions for images using a model built with CLIP & GPT2.")

# Image upload section
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "png", "jpeg"])

if uploaded_file is not None:
    # Display the uploaded image
    image = Image.open(uploaded_file)
    st.image(image, caption='Uploaded Image', use_column_width=True)

    # Generate caption button
    if st.button('Submit'):
        with st.spinner('Generating caption...'):
            start_time = time.time()
            caption = generate(image)
            end_time = time.time()

            st.text_area('Output', caption)
            st.write(f"Inference time: {end_time - start_time:.2f} seconds")