File size: 8,845 Bytes
308ef29 19b020d 308ef29 461eee5 308ef29 4a09c08 308ef29 4a09c08 308ef29 4a09c08 461eee5 308ef29 0aa5621 0536626 308ef29 461eee5 308ef29 4a09c08 308ef29 ffe3d95 308ef29 4a09c08 308ef29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
import streamlit as st
from PIL import Image
import time
from tqdm.auto import tqdm
import numpy as np
import torch
from torch import nn
print(torch.__version__)
device = torch.device('cpu')
print(device)
print('importing tokenizer')
from transformers import GPT2Tokenizer,GPT2LMHeadModel,DataCollatorWithPadding
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
tokenizer.pad_token_id = 0
collator = DataCollatorWithPadding(tokenizer = tokenizer)
class EncoderAttention(nn.Module):
def __init__(self,embed_dim=768, num_heads=8, dropout=0.1):
super().__init__()
self.mha = nn.MultiheadAttention(embed_dim, num_heads,batch_first=True, dropout=dropout)
self.layernorm = nn.LayerNorm(embed_dim)
def forward(self,x):
attn, _ = self.mha(query=x,
value=x,
key=x,
need_weights=False,
)
x = x + attn
return self.layernorm(x)
class FeedForward(nn.Module):
def __init__(self, embed_dim=768, dropout_rate=0.1):
super().__init__()
self.seq = nn.Sequential(
nn.Linear(embed_dim, embed_dim*2),
nn.ReLU(),
nn.Linear(embed_dim*2, embed_dim),
nn.Dropout(dropout_rate)
)
self.layernorm = nn.LayerNorm(embed_dim)
def forward(self, x):
x = x + self.seq(x)
return self.layernorm(x)
class MapperLayer(nn.Module):
def __init__(self, embed_dim=768, num_heads=8, dropout_rate=0.1):
super().__init__()
self.attn = EncoderAttention( num_heads=num_heads,
embed_dim=embed_dim,
dropout=dropout_rate)
self.ff = FeedForward(embed_dim=embed_dim,
dropout_rate=dropout_rate)
def forward(self, x):
x = self.attn(x)
x = self.ff(x)
return x
class Transformer(nn.Module):
def __init__(self,
num_layers=8,
num_heads=8,
embed_dim=768,
dropout_rate=0.1
):
super().__init__()
layers = [MapperLayer(embed_dim=embed_dim,
num_heads=num_heads,
dropout_rate=dropout_rate) for i in range(num_layers)]
self.layers = nn.ModuleList(layers)
def forward(self,x):
for layer in self.layers:
x = layer(x)
return x
class TransformerMapper(nn.Module):
def forward(self, x):
x = self.linear(x).view(x.shape[0], self.clip_length, -1)
prefix = self.prefix_const.unsqueeze(0).expand(x.shape[0], *self.prefix_const.shape) # (B,prefix_len,embed_dim)
prefix = torch.cat((x, prefix), dim=1)
return self.transformer(prefix)[:, self.clip_length:]
def __init__(self,
dim_clip = 768,
embed_dim = 768,
prefix_length = 16,
clip_length = 10,
num_layers = 8,
num_heads = 8,
dropout_rate = 0.1
):
super().__init__()
self.clip_length = clip_length
self.transformer = Transformer(
num_layers=num_layers,
num_heads=num_heads,
embed_dim=embed_dim,
dropout_rate=dropout_rate
)
self.linear = nn.Linear(dim_clip, self.clip_length * embed_dim) # CLIP prefixes (clip_length prefixes) (B,clip_len*768)
self.prefix_const = nn.Parameter(torch.randn(prefix_length, embed_dim), requires_grad=True)
class ClipCaptionModel(nn.Module):
def get_dummy_token(self, batch_size: int, device: torch.device) -> torch.Tensor:
return torch.zeros(batch_size, self.prefix_length, dtype=torch.int64, device=device)
def forward(self,
tokens: torch.Tensor,
prefix: torch.Tensor,
mask: torch.Tensor,
labels=None):
# create embeddings for the gpt model
embedding_text = self.gpt.transformer.wte(tokens)
prefix_projections = self.clip_project(prefix)
embedding_cat = torch.cat((prefix_projections, embedding_text), dim=1)
# prepare mask
if mask.shape[1] != embedding_cat.shape[1]:
dummy_mask = torch.ones(tokens.shape[0],self.prefix_length, dtype=torch.int64, device=mask.device)
mask = torch.cat([dummy_mask,mask],dim=1)
return self.gpt(inputs_embeds=embedding_cat,
labels=labels,
attention_mask=mask)
def __init__(self,
dim_clip = 768,
embed_dim = 768,
prefix_length = 16,
clip_length = 10,
num_layers = 8,
num_heads = 8,
dropout_rate = 0.1,
):
super().__init__()
self.prefix_length = prefix_length
self.gpt = GPT2LMHeadModel.from_pretrained('gpt2')
self.gpt_embedding_size = self.gpt.transformer.wte.weight.shape[1]
self.clip_project = TransformerMapper(
dim_clip = dim_clip,
embed_dim = self.gpt_embedding_size,
prefix_length = prefix_length,
clip_length = clip_length,
num_layers = num_layers,
num_heads = num_heads,
dropout_rate = dropout_rate)
print('loading model')
print()
## Prepare Model
CliPGPT = ClipCaptionModel()
path = "model_epoch_1_loss_2.0695.pt"
state_dict = torch.load(path,map_location=torch.device('cpu'))
# Apply the weights to the model
CliPGPT.load_state_dict(state_dict)
CliPGPT.to(device)
print('importing CLIP')
from transformers import CLIPProcessor, CLIPModel
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32").to(device)
model.eval()
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
def sample_from_logits(logits, temperature=0.3):
logits = logits / temperature
probabilities = torch.softmax(logits, dim=-1)
return torch.multinomial(probabilities, 1).squeeze()
def generate(image,
device=device,
max_tokens=48,
temperature=0.5,
verbose=True,
sample=True,
):
model.to(device)
CliPGPT.to(device)
# encode image
with torch.inference_mode():
input = torch.tensor(np.stack(processor.image_processor(image).pixel_values,axis=0)).to(device)
embeds = model.vision_model(input)
embeds = embeds.pooler_output
CliPGPT.eval()
prefix_length = CliPGPT.prefix_length
# prepare initial token '#' used as token to begin generation of caption
tokens = ['#']
input_ids,attention_mask = collator(tokenizer(tokens)).values()
# forward pass
for i in tqdm(range(max_tokens),desc='generating... '):
input_ids = input_ids.to(device)
embeds = embeds.to(device)
attention_mask = attention_mask.to(device)
with torch.inference_mode():
out = CliPGPT(
tokens= input_ids,
prefix= embeds,
mask= attention_mask,
)
logits = out.logits
logits = logits[:,prefix_length:,:]
# Sampling Technique
if sample:
next_token = sample_from_logits(logits[:, -1, :],
temperature=temperature)
else:
next_token = torch.argmax(logits[:,-1,:],dim=-1).squeeze()
token = next_token.item()
if token == tokenizer.eos_token_id:
break
# update string
tokens = [tokens[0] + tokenizer.decode(next_token)]
# update tokens
input_ids,attention_mask = collator(tokenizer(tokens)).values()
if verbose:
print(token)
print(tokens[0])
print()
return tokens[0].replace('#','').strip()
print('app starts')
st.title("CLIP GPT2 Image Captionning")
st.write("This is a web app for generating captions for images using a model built with CLIP & GPT2.")
# Image upload section
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "png", "jpeg"])
if uploaded_file is not None:
# Display the uploaded image
image = Image.open(uploaded_file)
st.image(image, caption='Uploaded Image', use_column_width=True)
# Generate caption button
if st.button('Submit'):
with st.spinner('Generating caption...'):
start_time = time.time()
caption = generate(image)
end_time = time.time()
st.text_area('Output', caption)
st.write(f"Inference time: {end_time - start_time:.2f} seconds")
|