File size: 12,864 Bytes
e017f5c
 
 
d46278b
 
e017f5c
 
 
 
 
5cf5d21
e017f5c
5ba955b
e017f5c
 
b96a40a
e017f5c
5cf5d21
 
 
 
 
e017f5c
 
 
d46278b
e017f5c
 
 
 
 
 
 
 
 
 
 
 
 
 
d46278b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e017f5c
 
 
 
 
4bed381
957da21
f17b0c4
e017f5c
 
957da21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5cf5d21
957da21
e017f5c
 
f8b687a
e017f5c
 
 
 
 
 
 
 
 
 
 
 
 
5b1d6e2
 
 
 
e017f5c
 
 
 
5d0c8ea
 
 
 
 
 
 
 
e017f5c
 
 
 
 
 
 
 
 
 
ed54b6b
e017f5c
 
 
 
 
 
 
d46278b
e017f5c
 
 
 
 
 
 
 
 
 
 
 
 
d23bece
e017f5c
 
 
d23bece
e017f5c
 
f17b0c4
e017f5c
 
 
 
9f8313e
 
 
8379f24
ed54b6b
 
 
9f8313e
ed54b6b
e017f5c
f17b0c4
e017f5c
 
5cf5d21
d46278b
 
 
 
 
 
 
 
5cf5d21
 
 
 
 
d46278b
e017f5c
 
 
 
 
 
 
 
 
 
 
 
 
ed54b6b
 
 
e017f5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6387f5
 
 
f8b687a
0c2859f
 
e017f5c
 
0c2859f
5cf5d21
0c2859f
 
5cf5d21
 
e017f5c
 
0c2859f
 
 
 
 
 
 
e017f5c
f8b687a
0c2859f
e017f5c
 
c6387f5
 
 
e017f5c
 
 
 
f8b687a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
import os
import time
import gc
from queue import Queue
from threading import Thread, Event
from itertools import islice
from datetime import datetime
import re  # for parsing <think> blocks
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from duckduckgo_search import DDGS
# import spaces  # Import spaces early to enable ZeroGPU support

# Optional: Disable GPU visibility if you wish to force CPU usage
os.environ["CUDA_VISIBLE_DEVICES"] = ""

if torch.cuda.is_available():
    device = "auto"
else:
    device = "cpu"

# ------------------------------
# Global Cancellation Event
# ------------------------------
cancel_event = Event()

# ------------------------------
# Torch-Compatible Model Definitions with Adjusted Descriptions
# ------------------------------
MODELS = {
    "Yee-R1-mini":      {"repo_id":"sds-ai/Yee-R1-mini","description":"小熠(Yee)AI 数据安全专家"},
    "secgpt-mini":      {"repo_id":"clouditera/secgpt-mini","description":"SecGPT 是由 云起无垠 于 2023 年正式推出的开源大模型,专为网络安全场景打造,旨在以人工智能技术全面提升安全防护效率与效果。"},
    "Qwen3-0.6B":    {"repo_id":"Qwen/Qwen3-0.6B","description":"Dense causal language model with 0.6 B total parameters (0.44 B non-embedding), 28 transformer layers, 16 query heads & 8 KV heads, native 32 768-token context window, dual-mode generation, full multilingual & agentic capabilities."},
    "Qwen3-1.7B":    {"repo_id":"Qwen/Qwen3-1.7B","description":"Dense causal language model with 1.7 B total parameters (1.4 B non-embedding), 28 layers, 16 query heads & 8 KV heads, 32 768-token context, stronger reasoning vs. 0.6 B variant, dual-mode inference, instruction following across 100+ languages."},
}

# Global cache for pipelines to avoid re-loading.
PIPELINES = {}

class TextIterStreamer:
    def __init__(self, tokenizer, skip_prompt=True, skip_special_tokens=True):
        self.tokenizer = tokenizer
        self.skip_prompt = skip_prompt
        self.skip_special_tokens = skip_special_tokens
        self.tokens = []
        self.text_queue = Queue()
        # self.text_queue = []
        self.next_tokens_are_prompt = True

    def put(self, value):
        if self.skip_prompt and self.next_tokens_are_prompt:
            self.next_tokens_are_prompt = False
        else:
            if len(value.shape) > 1:
                value = value[0]
            self.tokens.extend(value.tolist())
            word = self.tokenizer.decode(self.tokens, skip_special_tokens=self.skip_special_tokens)
            # self.text_queue.append(word)
            self.text_queue.put(word)

    def end(self):
        # self.text_queue.append(None)
        self.text_queue.put(None)

    def __iter__(self):
        return self

    def __next__(self):
        value = self.text_queue.get()
        if value is None:
            raise StopIteration()
        else:
            return value


def load_pipeline(model_name):
    """
    Load and cache a transformers pipeline for text generation.
    Tries bfloat16, falls back to float16 or float32 if unsupported.
    """
    global PIPELINES
    
    if model_name in PIPELINES.keys():
        return PIPELINES[model_name]
    repo = MODELS[model_name]["repo_id"]
    if model_name == "secgpt-mini":
        tokenizer = AutoTokenizer.from_pretrained(repo, trust_remote_code=True, subfolder="models")
        model = AutoModelForCausalLM.from_pretrained(
                repo,
                device_map=device,
                trust_remote_code=True,
                subfolder="models",
            )
    else:
        tokenizer = AutoTokenizer.from_pretrained(repo, trust_remote_code=True)
        model = AutoModelForCausalLM.from_pretrained(
                repo,
                device_map=device,
                trust_remote_code=True,
            )
    PIPELINES[model_name] = {"tokenizer": tokenizer, "model": model}
    return {"tokenizer": tokenizer, "model": model}


def retrieve_context(query, max_results=6, max_chars=600):
    """
    Retrieve search snippets from DuckDuckGo (runs in background).
    Returns a list of result strings.
    """
    try:
        with DDGS() as ddgs:
            return [f"{i+1}. {r.get('title','No Title')} - {r.get('body','')[:max_chars]}"
                    for i, r in enumerate(islice(ddgs.text(query, region="wt-wt", safesearch="off", timelimit="y"), max_results))]
    except Exception:
        return []

def format_conversation(history, system_prompt, tokenizer):
    if hasattr(tokenizer, "chat_template") and tokenizer.chat_template:
        if len(history) > 0:
            messages = [{"role": "system", "content": system_prompt.strip()}] + history
        else:
            messages = [{"role": "system", "content": system_prompt.strip()}]
        return tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True, enable_thinking=True)
    else:
        # Fallback for base LMs without chat template
        prompt = system_prompt.strip() + "\n"
        if len(history) > 0:
            for msg in history:
                if msg['role'] == 'user':
                    prompt += "User: " + msg['content'].strip() + "\n"
                elif msg['role'] == 'assistant':
                    prompt += "Assistant: " + msg['content'].strip() + "\n"
            if not prompt.strip().endswith("Assistant:"):
                prompt += "Assistant: "
        return prompt

def chat_response(user_msg, chat_history, system_prompt,
                  enable_search, max_results, max_chars,
                  model_name, max_tokens, temperature,
                  top_k, top_p, repeat_penalty, search_timeout):
    """
    Generates streaming chat responses, optionally with background web search.
    """
    cancel_event.clear()
    history = list(chat_history) if chat_history else []
    history.append({'role': 'user', 'content': user_msg})

    # Launch web search if enabled
    debug = ''
    search_results = []
    if enable_search:
        debug = 'Search task started.'
        thread_search = Thread(
            target=lambda: search_results.extend(
                retrieve_context(user_msg, int(max_results), int(max_chars))
            )
        )
        thread_search.daemon = True
        thread_search.start()
    else:
        debug = 'Web search disabled.'

    try:
        # wait up to 1s for snippets, then replace debug with them
        if enable_search:
            thread_search.join(timeout=float(search_timeout))
            if len(search_results) > 0:
                debug = "### Search results merged into prompt\n\n" + "\n".join(
                    f"- {r}" for r in search_results
                )
                system_prompt.strip() + "\n\nRelevant context:\n" + "\n".join(search_results)
            else:
                debug = "*No web search results found.*"
                enriched = system_prompt
        else:
            enriched = system_prompt

        pipe = load_pipeline(model_name)

        # TODO:
        debug += "\nLOAD MODEL:\n" + model_name
        prompt = format_conversation(history, enriched, pipe["tokenizer"])


        # TODO:
        debug += "\nPROMPT:\n" + prompt

        prompt_debug = f"\n\n--- Prompt Preview ---\n```\n{prompt}\n```"
        streamer = TextIterStreamer(pipe["tokenizer"],
                                        skip_prompt=True,
                                        skip_special_tokens=True)
        generation_config = dict(
            temperature=temperature,
            top_k=top_k,
            top_p=top_p,
            max_new_tokens=max_tokens,
            do_sample=True,
            repetition_penalty=repeat_penalty,
            streamer=streamer,
        )
        inputs = pipe["tokenizer"](prompt, return_tensors="pt")
        if device == "auto":
            input_ids = inputs["input_ids"].cuda()
        else:
            input_ids = inputs["input_ids"]
        gen_thread = Thread(target=lambda: pipe["model"].generate(input_ids=input_ids, **generation_config))
        gen_thread.start()

        # Buffers for thought vs answer
        thought_buf = ''
        answer_buf = ''
        in_thought = False

        # Stream tokens
        for chunk in streamer:
            if cancel_event.is_set():
                break
            text = chunk

            # TODO:
            debug += "\nRESPONSE:\n" + text

            # Detect start of thinking
            if not in_thought and '<think>' in text:
                in_thought = True
                # Insert thought placeholder
                history.append({
                    'role': 'assistant',
                    'content': '',
                    'metadata': {'title': '💭 Thought'}
                })
                # Capture after opening tag
                after = text.split('<think>', 1)[1]
                thought_buf += after
                # If closing tag in same chunk
                if '</think>' in thought_buf:
                    before, after2 = thought_buf.split('</think>', 1)
                    history[-1]['content'] = before.strip()
                    in_thought = False
                    # Start answer buffer
                    answer_buf = after2
                    history.append({'role': 'assistant', 'content': answer_buf})
                else:
                    history[-1]['content'] = thought_buf
                yield history, debug
                continue

            # Continue thought streaming
            if in_thought:
                thought_buf += text
                if '</think>' in thought_buf:
                    before, after2 = thought_buf.split('</think>', 1)
                    history[-1]['content'] = before.strip()
                    in_thought = False
                    # Start answer buffer
                    answer_buf = after2
                    history.append({'role': 'assistant', 'content': answer_buf})
                else:
                    history[-1]['content'] = thought_buf
                yield history, debug
                continue

            # Stream answer
            if not answer_buf:
                history.append({'role': 'assistant', 'content': ''})
            answer_buf += text
            history[-1]['content'] = answer_buf
            yield history, debug

        gen_thread.join()
        yield history, debug + prompt_debug
    except Exception as e:
        history.append({'role': 'assistant', 'content': f"Error: {e}"})
        yield history, debug
    finally:
        gc.collect()


def cancel_generation():
    cancel_event.set()
    return 'Generation cancelled.'


def update_default_prompt(enable_search):
    today = datetime.now().strftime('%Y-%m-%d')
    return f"You are a helpful assistant. Today is {today}."

# ------------------------------
# Gradio UI
# ------------------------------
with gr.Blocks(title="Yee R1 Demo") as demo:
    gr.Markdown("## Yee-R1 Demo")
    gr.Markdown("小熠(Yee)AI 数据安全专家")
    with gr.Row():
        with gr.Column(scale=3):
            model_dd = gr.Dropdown(label="Select Model", choices=list(MODELS.keys()), value=list(MODELS.keys())[0])
            search_chk = gr.Checkbox(label="Enable Web Search", value=False)
            sys_prompt = gr.Textbox(label="System Prompt", lines=3, value=update_default_prompt(search_chk.value))
            gr.Markdown("### Generation Parameters")
            max_tok = gr.Slider(64, 16384, value=4096, step=32, label="Max Tokens")
            temp = gr.Slider(0.1, 2.0, value=0.6, step=0.1, label="Temperature")
            k = gr.Slider(1, 100, value=40, step=1, label="Top-K")
            p = gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="Top-P")
            rp = gr.Slider(1.0, 2.0, value=1.2, step=0.1, label="Repetition Penalty")
            gr.Markdown("### Web Search Settings")
            mr = gr.Number(value=6, precision=0, label="Max Results")
            mc = gr.Number(value=600, precision=0, label="Max Chars/Result")
            st = gr.Slider(minimum=0.0, maximum=30.0, step=0.5, value=5.0, label="Search Timeout (s)")
            clr = gr.Button("Clear Chat")
            cnl = gr.Button("Cancel Generation")
        with gr.Column(scale=7):
            chat = gr.Chatbot(type="messages")
            txt = gr.Textbox(placeholder="Type your message and press Enter...")
            dbg = gr.Markdown()

    search_chk.change(fn=update_default_prompt, inputs=search_chk, outputs=sys_prompt)
    clr.click(fn=lambda: ([], "", ""), outputs=[chat, txt, dbg])
    cnl.click(fn=cancel_generation, outputs=dbg)
    txt.submit(fn=chat_response,
               inputs=[txt, chat, sys_prompt, search_chk, mr, mc,
                       model_dd, max_tok, temp, k, p, rp, st],
               outputs=[chat, dbg])
    demo.launch()