Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,13 +1,13 @@
|
|
1 |
import os
|
2 |
import time
|
3 |
import gc
|
4 |
-
import
|
|
|
5 |
from itertools import islice
|
6 |
from datetime import datetime
|
7 |
import re # for parsing <think> blocks
|
8 |
import gradio as gr
|
9 |
import torch
|
10 |
-
from transformers import TextIteratorStreamer
|
11 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
12 |
from duckduckgo_search import DDGS
|
13 |
# import spaces # Import spaces early to enable ZeroGPU support
|
@@ -23,7 +23,7 @@ else:
|
|
23 |
# ------------------------------
|
24 |
# Global Cancellation Event
|
25 |
# ------------------------------
|
26 |
-
cancel_event =
|
27 |
|
28 |
# ------------------------------
|
29 |
# Torch-Compatible Model Definitions with Adjusted Descriptions
|
@@ -38,6 +38,42 @@ MODELS = {
|
|
38 |
# Global cache for pipelines to avoid re-loading.
|
39 |
PIPELINES = {}
|
40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
def load_pipeline(model_name):
|
42 |
"""
|
43 |
Load and cache a transformers pipeline for text generation.
|
@@ -101,7 +137,7 @@ def chat_response(user_msg, chat_history, system_prompt,
|
|
101 |
search_results = []
|
102 |
if enable_search:
|
103 |
debug = 'Search task started.'
|
104 |
-
thread_search =
|
105 |
target=lambda: search_results.extend(
|
106 |
retrieve_context(user_msg, int(max_results), int(max_chars))
|
107 |
)
|
@@ -142,20 +178,20 @@ def chat_response(user_msg, chat_history, system_prompt,
|
|
142 |
skip_prompt=True,
|
143 |
skip_special_tokens=True)
|
144 |
generation_config = dict(
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
inputs = pipe["tokenizer"](prompt, return_tensors="pt")
|
154 |
if device == "auto":
|
155 |
input_ids = inputs["input_ids"].cuda()
|
156 |
else:
|
157 |
input_ids = inputs["input_ids"]
|
158 |
-
gen_thread =
|
159 |
gen_thread.start()
|
160 |
|
161 |
# Buffers for thought vs answer
|
|
|
1 |
import os
|
2 |
import time
|
3 |
import gc
|
4 |
+
from queue import Queue
|
5 |
+
from threading import Thread, Event
|
6 |
from itertools import islice
|
7 |
from datetime import datetime
|
8 |
import re # for parsing <think> blocks
|
9 |
import gradio as gr
|
10 |
import torch
|
|
|
11 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
12 |
from duckduckgo_search import DDGS
|
13 |
# import spaces # Import spaces early to enable ZeroGPU support
|
|
|
23 |
# ------------------------------
|
24 |
# Global Cancellation Event
|
25 |
# ------------------------------
|
26 |
+
cancel_event = Event()
|
27 |
|
28 |
# ------------------------------
|
29 |
# Torch-Compatible Model Definitions with Adjusted Descriptions
|
|
|
38 |
# Global cache for pipelines to avoid re-loading.
|
39 |
PIPELINES = {}
|
40 |
|
41 |
+
class TextIterStreamer:
|
42 |
+
def __init__(self, tokenizer, skip_prompt=True, skip_special_tokens=True):
|
43 |
+
self.tokenizer = tokenizer
|
44 |
+
self.skip_prompt = skip_prompt
|
45 |
+
self.skip_special_tokens = skip_special_tokens
|
46 |
+
self.tokens = []
|
47 |
+
self.text_queue = Queue()
|
48 |
+
# self.text_queue = []
|
49 |
+
self.next_tokens_are_prompt = True
|
50 |
+
|
51 |
+
def put(self, value):
|
52 |
+
if self.skip_prompt and self.next_tokens_are_prompt:
|
53 |
+
self.next_tokens_are_prompt = False
|
54 |
+
else:
|
55 |
+
if len(value.shape) > 1:
|
56 |
+
value = value[0]
|
57 |
+
self.tokens.extend(value.tolist())
|
58 |
+
word = self.tokenizer.decode(self.tokens, skip_special_tokens=self.skip_special_tokens)
|
59 |
+
# self.text_queue.append(word)
|
60 |
+
self.text_queue.put(word)
|
61 |
+
|
62 |
+
def end(self):
|
63 |
+
# self.text_queue.append(None)
|
64 |
+
self.text_queue.put(None)
|
65 |
+
|
66 |
+
def __iter__(self):
|
67 |
+
return self
|
68 |
+
|
69 |
+
def __next__(self):
|
70 |
+
value = self.text_queue.get()
|
71 |
+
if value is None:
|
72 |
+
raise StopIteration()
|
73 |
+
else:
|
74 |
+
return value
|
75 |
+
|
76 |
+
|
77 |
def load_pipeline(model_name):
|
78 |
"""
|
79 |
Load and cache a transformers pipeline for text generation.
|
|
|
137 |
search_results = []
|
138 |
if enable_search:
|
139 |
debug = 'Search task started.'
|
140 |
+
thread_search = Thread(
|
141 |
target=lambda: search_results.extend(
|
142 |
retrieve_context(user_msg, int(max_results), int(max_chars))
|
143 |
)
|
|
|
178 |
skip_prompt=True,
|
179 |
skip_special_tokens=True)
|
180 |
generation_config = dict(
|
181 |
+
temperature=temperature,
|
182 |
+
top_k=top_k,
|
183 |
+
top_p=top_p,
|
184 |
+
max_new_tokens=max_tokens,
|
185 |
+
do_sample=True,
|
186 |
+
repetition_penalty=repeat_penalty,
|
187 |
+
streamer=streamer,
|
188 |
+
)
|
189 |
inputs = pipe["tokenizer"](prompt, return_tensors="pt")
|
190 |
if device == "auto":
|
191 |
input_ids = inputs["input_ids"].cuda()
|
192 |
else:
|
193 |
input_ids = inputs["input_ids"]
|
194 |
+
gen_thread = Thread(target=lambda: pipe["model"].generate(input_ids=input_ids, **generation_config))
|
195 |
gen_thread.start()
|
196 |
|
197 |
# Buffers for thought vs answer
|