Files changed (1) hide show
  1. README.md +82 -12
README.md CHANGED
@@ -1,12 +1,82 @@
1
- ---
2
- title: README
3
- emoji: 🦀
4
- colorFrom: green
5
- colorTo: gray
6
- sdk: static
7
- pinned: false
8
- license: bsd-3-clause
9
- short_description: Probabilistic modeling and analysis of single-cell omics dat
10
- ---
11
-
12
- [scvi-tools](https://github.com/scverse/scvi-tools) (single-cell variational inference tools) is a package for probabilistic modeling and analysis of single-cell omics data, built on top of PyTorch, Jax, and AnnData.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: README
3
+ emoji: 🦀
4
+ colorFrom: green
5
+ colorTo: gray
6
+ sdk: static
7
+ pinned: false
8
+ license: bsd-3-clause
9
+ short_description: Probabilistic modeling and analysis of single-cell omics dat
10
+ ---
11
+ # **scvi-tools**
12
+
13
+ Welcome to the **scvi-tools** Model Card. This repository contains state-of-the-art probabilistic models tailored for analyzing single-cell omics data, enabling researchers to gain meaningful biological insights through cutting-edge machine learning techniques.
14
+ **scvi-tools** is a member of the [scverse ecosystem](https://scverse.org).
15
+
16
+ ---
17
+
18
+ ## **Model Overview**
19
+ scvi-tools offers a comprehensive suite of models designed to address various challenges in single-cell data analysis. These models are scalable and extensively documented.
20
+
21
+ ### **Key Models**
22
+ - **[scVI](https://docs.scvi-tools.org/en/stable/user_guide/models.html#scvi)**:
23
+ - A variational autoencoder for dimensionality reduction, batch correction, and clustering.
24
+ - Ideal for processing single-cell RNA-seq data.
25
+ - **[SCANVI](https://docs.scvi-tools.org/en/stable/user_guide/models.html#scanvi)**:
26
+ - A semi-supervised model designed for label prediction, especially in cases of partially labeled data.
27
+ - **[TOTALVI](https://docs.scvi-tools.org/en/stable/user_guide/models.html#totalvi)**:
28
+ - A multi-modal model for joint analysis of RNA and protein data, additionally allowing imputation of missing protein data.
29
+ - **[MultiVI](https://docs.scvi-tools.org/en/stable/user_guide/models.html#multivi)**:
30
+ - A multi-modal model for joint analysis of RNA, ATAC and protein data, enabling integrative insights from diverse omics data.
31
+ - **[DestVI](https://docs.scvi-tools.org/en/stable/user_guide/models.html#destvi)**:
32
+ - A deconvolution model for prediction of single-cell profiles given subcellular spatial transcriptomics data. We provide here pre-trained single cell models.
33
+ - **[Stereoscope](https://docs.scvi-tools.org/en/stable/user_guide/models.html#stereoscope)**:
34
+ - A deconvolution model for prediction of cell-type composition given subcellular spatial transcriptomics data. We provide here pre-trained single cell models.
35
+
36
+ Explore the full list of models in our **[documentation](https://docs.scvi-tools.org/en/stable/user_guide/index.html)**.
37
+ Please reach out on [discourse](https://discourse.scverse.org) if you want to add additional models to scvi-hub.
38
+
39
+ ---
40
+
41
+ ## **Key Applications**
42
+ These models have been applied to a wide array of biological questions, such as:
43
+ - Batch correction across experiments.
44
+ - Identification of rare cell populations.
45
+ - Multi-modal integration of single-cell RNA and protein data.
46
+ - Differential expression analysis in disease contexts.
47
+
48
+ For hands-on examples, refer to our **[tutorials](https://docs.scvi-tools.org/en/stable/tutorials/index.html)**.
49
+
50
+ To learn how to
51
+
52
+ ---
53
+
54
+ ## **Publications**
55
+ - **[Original scvi-tools Paper](https://www.nature.com/articles/s41587-021-01206-w)**:
56
+ - Published in *Nature Biotechnology*, this paper introduces the foundational principles and applications of scvi-tools.
57
+ - **[scvi-hub Preprint](https://www.biorxiv.org/content/10.1101/2024.03.01.582887v1)**:
58
+ - This manuscript showcases real-world applications of scvi-hub in diverse biological contexts and provides building blocks
59
+ - to apply these models in your own research
60
+
61
+ ---
62
+
63
+ ## **How to Get Started**
64
+ 1. Visit our **[official documentation](https://docs.scvi-tools.org)** to get started with installation and explore our API.
65
+ 2. Follow our **[tutorials](https://docs.scvi-tools.org/en/stable/tutorials/index.html)** for step-by-step guides on using scvi-tools effectively.
66
+ 3. Dive into our **[models](https://docs.scvi-tools.org/en/stable/user_guide/index.html)** to see how they can transform your single-cell analysis.
67
+
68
+ Learn how to apply scvi-hub for analysis of query datasets in our [HLCA tutorial](https://docs.scvi-tools.org/en/stable/tutorials/notebooks/scrna/query_hlca_knn.html)
69
+ Discover how to efficiently access CELLxGENE census using our minified models in our [CELLxGENE census tutorial](https://docs.scvi-tools.org/en/stable/tutorials/notebooks/hub/cellxgene_census_model.html)
70
+
71
+ ---
72
+
73
+ ## **Contributing**
74
+ scvi-tools is an open-source initiative. Contributions are welcome! Join us on GitHub to submit issues, suggest features, or collaborate.
75
+ Contribute your own models to allow the single-cell community to leverage your reference datasets.
76
+
77
+ ---
78
+
79
+ ## **Contact**
80
+ - Website: [https://scvi-tools.org](https://scvi-tools.org)
81
+ - GitHub: [https://github.com/scverse/scvi-tools](https://github.com/scverse/scvi-tools)
82
+ - Tutorials: [scvi-tools Tutorials](https://docs.scvi-tools.org/en/stable/tutorials/index.html)