Spaces:
Running
Running
Update app.py
#1
by
samvish
- opened
app.py
CHANGED
@@ -1,170 +1,118 @@
|
|
1 |
import asyncio
|
|
|
2 |
import re
|
3 |
-
|
4 |
import streamlit as st
|
5 |
-
|
|
|
|
|
|
|
|
|
6 |
from pydantic_ai.models.groq import GroqModel
|
7 |
-
import nest_asyncio
|
8 |
from pydantic_ai.messages import ModelMessage
|
9 |
-
import pdfplumber
|
10 |
-
from transformers import pipeline
|
11 |
-
import torch
|
12 |
-
import os
|
13 |
import presentation as customClass
|
14 |
-
|
15 |
-
from dataclasses import dataclass
|
16 |
-
|
17 |
|
|
|
18 |
api_key = os.getenv("API_KEY")
|
19 |
-
|
20 |
-
|
21 |
-
result_data:list[customClass.PPT] = []
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
# to generate ppt
|
26 |
-
model = GroqModel("llama3-groq-70b-8192-tool-use-preview", api_key = api_key)
|
27 |
|
|
|
|
|
28 |
|
29 |
-
#
|
|
|
30 |
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
31 |
-
#summarizer = pipeline('text2text-generation', model='describeai/gemini')
|
32 |
-
#nlpaueb/legal-bert-base-uncased
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
|
37 |
def split_into_token_chunks(text: str, max_tokens: int = 300) -> list:
|
38 |
"""
|
39 |
Splits a long string into chunks of a specified maximum number of tokens (words).
|
40 |
-
|
41 |
-
:param text: The input string to split.
|
42 |
-
:param max_tokens: The maximum number of tokens (words) per chunk.
|
43 |
-
:return: A list of strings, each containing up to `max_tokens` tokens.
|
44 |
"""
|
45 |
-
# Split the text into words (tokens)
|
46 |
tokens = text.split()
|
47 |
-
|
48 |
-
# Create chunks of words
|
49 |
-
chunks = [' '.join(tokens[i:i + max_tokens]) for i in range(0, len(tokens), max_tokens)]
|
50 |
-
|
51 |
-
return chunks
|
52 |
|
53 |
def return_data() -> str:
|
54 |
-
|
|
|
55 |
|
56 |
@dataclass
|
57 |
class SupportDependencies:
|
58 |
-
db:str
|
59 |
-
|
60 |
|
61 |
async def ppt_content(data):
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
"
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
message_history: list[ModelMessage] = []
|
87 |
-
# for i, chunk in enumerate(listOfString):
|
88 |
-
# print(f"Chunk {i}:\n{chunk}\n")
|
89 |
-
# @agent.tool
|
90 |
-
# async def agentTooled(ctx: RunContext)-> str:
|
91 |
-
# """
|
92 |
-
# This is all the text from a pdf file that user has uploaded
|
93 |
-
|
94 |
-
# """
|
95 |
-
# return listOfString[0]
|
96 |
-
|
97 |
-
|
98 |
-
result = agent.run_sync(user_prompt = f"Create me a powerpoint presentation from {listOfString[0]}",
|
99 |
-
message_history = message_history,
|
100 |
-
)
|
101 |
-
result_1 = agent.run_sync(user_prompt = f"Create me a powerpoint presentation from {listOfString[1]}",
|
102 |
-
message_history = result.all_messages(),
|
103 |
-
)
|
104 |
-
result_2 = agent.run_sync(user_prompt = f"Create me a powerpoint presentation from {listOfString[2]}",
|
105 |
-
message_history = result_1.all_messages(),
|
106 |
)
|
107 |
-
|
108 |
-
print(result_2.data)
|
109 |
|
|
|
|
|
110 |
|
|
|
111 |
|
112 |
-
|
|
|
113 |
|
114 |
-
|
115 |
-
# #print(result_1.data)
|
116 |
-
# message_history = result_1.all_messages()
|
117 |
-
# print(result_1)
|
118 |
-
|
119 |
|
120 |
def ai_ppt(data):
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
# print(x)
|
126 |
-
# summary = summarizer(x, max_length=500, min_length=120, truncation=True,do_sample=False)
|
127 |
-
# summary_texts .append([item['summary_text'] for item in summary])
|
128 |
-
# print(summary_texts)
|
129 |
-
|
130 |
-
# #summary_texts = [item['generated_text'] for item in summary]
|
131 |
-
asyncio.run(ppt_content(data=data))
|
132 |
-
|
133 |
|
134 |
def extract_data(feed):
|
135 |
-
|
|
|
|
|
136 |
with pdfplumber.open(feed) as pdf:
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
return None
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
# if data is not None:
|
147 |
-
# st.caption(data)
|
148 |
-
# ai_ppt(data=data)
|
149 |
|
150 |
def main():
|
151 |
-
|
|
|
|
|
|
|
152 |
|
153 |
if uploaded_file is not None:
|
154 |
extract_data(uploaded_file)
|
155 |
|
156 |
-
if st.button("
|
157 |
-
|
158 |
-
|
|
|
|
|
|
|
|
|
|
|
159 |
binary_data = uploaded_file.getvalue()
|
160 |
-
pdf_viewer(input=binary_data,
|
161 |
-
width=700)
|
162 |
-
|
163 |
|
164 |
if __name__ == '__main__':
|
165 |
-
import asyncio
|
166 |
nest_asyncio.apply()
|
167 |
main()
|
168 |
-
|
169 |
-
|
170 |
-
|
|
|
1 |
import asyncio
|
2 |
+
import os
|
3 |
import re
|
4 |
+
import pdfplumber
|
5 |
import streamlit as st
|
6 |
+
import torch
|
7 |
+
from transformers import pipeline
|
8 |
+
from dataclasses import dataclass
|
9 |
+
from streamlit_pdf_viewer import pdf_viewer
|
10 |
+
from pydantic_ai import Agent, RunContext, Tool
|
11 |
from pydantic_ai.models.groq import GroqModel
|
|
|
12 |
from pydantic_ai.messages import ModelMessage
|
|
|
|
|
|
|
|
|
13 |
import presentation as customClass
|
14 |
+
import nest_asyncio
|
|
|
|
|
15 |
|
16 |
+
# Load API key
|
17 |
api_key = os.getenv("API_KEY")
|
18 |
+
if not api_key:
|
19 |
+
raise ValueError("API_KEY is not set in the environment variables.")
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
+
data = []
|
22 |
+
result_data: list[customClass.PPT] = []
|
23 |
|
24 |
+
# Initialize models
|
25 |
+
model = GroqModel("llama3-groq-70b-8192-tool-use-preview", api_key=api_key)
|
26 |
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
def split_into_token_chunks(text: str, max_tokens: int = 300) -> list:
|
29 |
"""
|
30 |
Splits a long string into chunks of a specified maximum number of tokens (words).
|
|
|
|
|
|
|
|
|
31 |
"""
|
|
|
32 |
tokens = text.split()
|
33 |
+
return [' '.join(tokens[i:i + max_tokens]) for i in range(0, len(tokens), max_tokens)]
|
|
|
|
|
|
|
|
|
34 |
|
35 |
def return_data() -> str:
|
36 |
+
"""Returns concatenated extracted data."""
|
37 |
+
return "\n".join(data)
|
38 |
|
39 |
@dataclass
|
40 |
class SupportDependencies:
|
41 |
+
db: str
|
|
|
42 |
|
43 |
async def ppt_content(data):
|
44 |
+
"""
|
45 |
+
Generates PowerPoint content using an AI model.
|
46 |
+
"""
|
47 |
+
if not data:
|
48 |
+
raise ValueError("No valid text found for PowerPoint generation.")
|
49 |
+
|
50 |
+
agent = Agent(
|
51 |
+
model,
|
52 |
+
result_type=customClass.PPT,
|
53 |
+
tools=[return_data],
|
54 |
+
system_prompt="""
|
55 |
+
You are an expert in creating PowerPoint presentations.
|
56 |
+
Create 5 slides:
|
57 |
+
1. Title Slide: Introduction about the presentation.
|
58 |
+
2. Methodology Slide: Summarize the methodology in detail.
|
59 |
+
3. Results Slide: Present key findings in bullet points.
|
60 |
+
4. Discussion Slide: Summarize implications and limitations.
|
61 |
+
5. Conclusion Slide: State the overall conclusion.
|
62 |
+
|
63 |
+
Each slide should have:
|
64 |
+
- Title: Clear and concise.
|
65 |
+
- Text: Short and informative explanation.
|
66 |
+
- Bullet Points: 3-5 summarized key takeaways.
|
67 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
)
|
|
|
|
|
69 |
|
70 |
+
listOfString = split_into_token_chunks("\n".join(data))
|
71 |
+
message_history: list[ModelMessage] = []
|
72 |
|
73 |
+
result = agent.run_sync(user_prompt=f"Create a PowerPoint presentation from {listOfString[0]}", message_history=message_history)
|
74 |
|
75 |
+
for i in range(1, len(listOfString)):
|
76 |
+
result = agent.run_sync(user_prompt=f"Continue creating the PowerPoint presentation from {listOfString[i]}", message_history=result.all_messages())
|
77 |
|
78 |
+
print(result.data)
|
|
|
|
|
|
|
|
|
79 |
|
80 |
def ai_ppt(data):
|
81 |
+
"""Runs the PowerPoint generation in an async loop."""
|
82 |
+
loop = asyncio.new_event_loop()
|
83 |
+
asyncio.set_event_loop(loop)
|
84 |
+
loop.run_until_complete(ppt_content(data=data))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
def extract_data(feed):
|
87 |
+
"""Extracts text from PDF and appends to `data` list."""
|
88 |
+
global data
|
89 |
+
data = [] # Reset data before extracting
|
90 |
with pdfplumber.open(feed) as pdf:
|
91 |
+
for p in pdf.pages:
|
92 |
+
text = p.extract_text()
|
93 |
+
if text:
|
94 |
+
data.append(text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
def main():
|
97 |
+
"""Main Streamlit app function."""
|
98 |
+
st.title("AI-Powered PowerPoint Generator")
|
99 |
+
|
100 |
+
uploaded_file = st.file_uploader("Choose a PDF file", type="pdf")
|
101 |
|
102 |
if uploaded_file is not None:
|
103 |
extract_data(uploaded_file)
|
104 |
|
105 |
+
if st.button("Generate PPT"):
|
106 |
+
try:
|
107 |
+
ai_ppt(data)
|
108 |
+
st.success("PowerPoint generation completed!")
|
109 |
+
except Exception as e:
|
110 |
+
st.error(f"Error generating PPT: {e}")
|
111 |
+
|
112 |
+
# Display PDF
|
113 |
binary_data = uploaded_file.getvalue()
|
114 |
+
pdf_viewer(input=binary_data, width=700)
|
|
|
|
|
115 |
|
116 |
if __name__ == '__main__':
|
|
|
117 |
nest_asyncio.apply()
|
118 |
main()
|
|
|
|
|
|