Spaces:
Sleeping
Sleeping
Upload app.py with huggingface_hub
Browse files
app.py
CHANGED
@@ -1,143 +1,44 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline
|
3 |
-
import torch
|
4 |
|
5 |
-
# Load the
|
6 |
-
# This model doesn't have pipeline.py - it's just a fine-tuned DistilBERT
|
7 |
-
model_id = "samurai9776/thought-classifier-menu-aware"
|
8 |
-
|
9 |
-
print(f"Loading model: {model_id}")
|
10 |
-
|
11 |
-
# Load without trust_remote_code (new model doesn't need it)
|
12 |
classifier = pipeline(
|
13 |
"text-classification",
|
14 |
-
model=
|
15 |
-
device=0 if torch.cuda.is_available() else -1
|
16 |
)
|
17 |
|
18 |
-
print("β
Model loaded successfully!")
|
19 |
-
|
20 |
def classify_thought(ai_utterance, cx_utterance):
|
21 |
-
"""Classify if the conversation is complete or incomplete"""
|
22 |
-
|
23 |
if not ai_utterance or not cx_utterance:
|
24 |
-
return "Please enter both utterances", 0, 0
|
25 |
|
26 |
-
# Combine utterances with [SEP] token
|
27 |
text = f"{ai_utterance} [SEP] {cx_utterance}"
|
28 |
-
|
29 |
-
# Get prediction
|
30 |
results = classifier(text)
|
31 |
|
32 |
-
# Extract scores
|
33 |
scores = {r['label']: r['score'] for r in results}
|
34 |
complete_score = scores.get('COMPLETE', 0)
|
35 |
incomplete_score = scores.get('INCOMPLETE', 0)
|
36 |
|
37 |
-
# Determine prediction
|
38 |
prediction = "Complete β" if complete_score > incomplete_score else "Incomplete β οΈ"
|
39 |
-
|
40 |
-
# Determine confidence
|
41 |
-
confidence = max(complete_score, incomplete_score)
|
42 |
-
confidence_text = f"{confidence:.1%} confidence"
|
43 |
-
|
44 |
-
return prediction, complete_score, incomplete_score, confidence_text
|
45 |
|
46 |
-
|
47 |
-
|
48 |
-
title="Thought Completion Classifier - Menu Aware v2",
|
49 |
-
theme=gr.themes.Soft()
|
50 |
-
) as demo:
|
51 |
-
gr.Markdown("""
|
52 |
-
# π€ Thought Completion Classifier - Menu Aware v2
|
53 |
-
|
54 |
-
Enhanced model with better context understanding and menu awareness.
|
55 |
-
|
56 |
-
### β¨ What's New in v2:
|
57 |
-
- β
Trained on 15,000+ examples (vs 900 in v1)
|
58 |
-
- β
Fixed 3,000+ mislabeled training examples
|
59 |
-
- β
Handles ambiguous terms like "chicken" (75 menu items!)
|
60 |
-
- β
Better context understanding
|
61 |
-
- β
~92% accuracy
|
62 |
-
|
63 |
-
### π― How it works:
|
64 |
-
The model understands context:
|
65 |
-
- "What sandwich?" + "Chicken" = **Complete** (context is clear)
|
66 |
-
- "Anything else?" + "Chicken" = **Incomplete** (ambiguous)
|
67 |
-
""")
|
68 |
|
69 |
with gr.Row():
|
70 |
with gr.Column():
|
71 |
-
ai_input = gr.Textbox(
|
72 |
-
|
73 |
-
|
74 |
-
lines=2
|
75 |
-
)
|
76 |
-
cx_input = gr.Textbox(
|
77 |
-
label="Customer Utterance",
|
78 |
-
placeholder="e.g., Chicken",
|
79 |
-
lines=2
|
80 |
-
)
|
81 |
-
|
82 |
-
classify_btn = gr.Button("π Classify", variant="primary", size="lg")
|
83 |
|
84 |
with gr.Column():
|
85 |
-
prediction = gr.Textbox(
|
86 |
-
|
87 |
-
|
88 |
-
elem_classes=["prediction-output"]
|
89 |
-
)
|
90 |
-
with gr.Row():
|
91 |
-
complete_score = gr.Number(
|
92 |
-
label="Complete Score",
|
93 |
-
precision=3,
|
94 |
-
interactive=False
|
95 |
-
)
|
96 |
-
incomplete_score = gr.Number(
|
97 |
-
label="Incomplete Score",
|
98 |
-
precision=3,
|
99 |
-
interactive=False
|
100 |
-
)
|
101 |
-
confidence = gr.Textbox(
|
102 |
-
label="Confidence",
|
103 |
-
interactive=False
|
104 |
-
)
|
105 |
-
|
106 |
-
# Examples showing context awareness
|
107 |
-
gr.Markdown("### π Try these examples to see context awareness:")
|
108 |
-
gr.Examples(
|
109 |
-
examples=[
|
110 |
-
["What can I get for you?", "Chicken", "Should be INCOMPLETE (ambiguous)"],
|
111 |
-
["What sandwich would you like?", "Chicken", "Should be COMPLETE (context clear)"],
|
112 |
-
["Chicken or beef?", "Chicken", "Should be COMPLETE (direct answer)"],
|
113 |
-
["Chicken or beef?", "Large", "Should be INCOMPLETE (doesn't answer question)"],
|
114 |
-
["What size?", "Large", "Should be COMPLETE (answers size question)"],
|
115 |
-
["Anything else?", "Large", "Should be INCOMPLETE (size without item)"],
|
116 |
-
["Ready to order?", "Spicy Chicken Sandwich Combo", "Should be COMPLETE (full item)"],
|
117 |
-
["Anything else?", "That's all", "Should be COMPLETE (clear ending)"],
|
118 |
-
],
|
119 |
-
inputs=[ai_input, cx_input],
|
120 |
-
outputs=[prediction, complete_score, incomplete_score, confidence],
|
121 |
-
fn=classify_thought,
|
122 |
-
cache_examples=True,
|
123 |
-
)
|
124 |
|
125 |
classify_btn.click(
|
126 |
-
|
127 |
inputs=[ai_input, cx_input],
|
128 |
-
outputs=[prediction, complete_score, incomplete_score
|
129 |
)
|
130 |
-
|
131 |
-
gr.Markdown("""
|
132 |
-
---
|
133 |
-
### π Model Comparison:
|
134 |
-
- **v1**: Rule-based + neural (samurai9776/thought-classifier)
|
135 |
-
- **v2**: Pure neural with better training (samurai9776/thought-classifier-menu-aware)
|
136 |
-
|
137 |
-
### π Links:
|
138 |
-
- [Model v2 (Current)](https://huggingface.co/samurai9776/thought-classifier-menu-aware)
|
139 |
-
- [Model v1 (Previous)](https://huggingface.co/samurai9776/thought-classifier)
|
140 |
-
""")
|
141 |
|
142 |
-
|
143 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline
|
|
|
3 |
|
4 |
+
# Load the clean v2 model
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
classifier = pipeline(
|
6 |
"text-classification",
|
7 |
+
model="samurai9776/thought-classifier-menu-aware"
|
|
|
8 |
)
|
9 |
|
|
|
|
|
10 |
def classify_thought(ai_utterance, cx_utterance):
|
|
|
|
|
11 |
if not ai_utterance or not cx_utterance:
|
12 |
+
return "Please enter both utterances", 0, 0
|
13 |
|
|
|
14 |
text = f"{ai_utterance} [SEP] {cx_utterance}"
|
|
|
|
|
15 |
results = classifier(text)
|
16 |
|
|
|
17 |
scores = {r['label']: r['score'] for r in results}
|
18 |
complete_score = scores.get('COMPLETE', 0)
|
19 |
incomplete_score = scores.get('INCOMPLETE', 0)
|
20 |
|
|
|
21 |
prediction = "Complete β" if complete_score > incomplete_score else "Incomplete β οΈ"
|
22 |
+
return prediction, complete_score, incomplete_score
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
+
with gr.Blocks(title="Thought Classifier v2") as demo:
|
25 |
+
gr.Markdown("# π€ Thought Completion Classifier v2")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
with gr.Row():
|
28 |
with gr.Column():
|
29 |
+
ai_input = gr.Textbox(label="AI Utterance", placeholder="What sandwich?")
|
30 |
+
cx_input = gr.Textbox(label="Customer Utterance", placeholder="Chicken")
|
31 |
+
classify_btn = gr.Button("Classify", variant="primary")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
with gr.Column():
|
34 |
+
prediction = gr.Textbox(label="Prediction")
|
35 |
+
complete_score = gr.Number(label="Complete Score")
|
36 |
+
incomplete_score = gr.Number(label="Incomplete Score")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
classify_btn.click(
|
39 |
+
classify_thought,
|
40 |
inputs=[ai_input, cx_input],
|
41 |
+
outputs=[prediction, complete_score, incomplete_score]
|
42 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
+
demo.launch()
|
|