Spaces:
Sleeping
Sleeping
Upload app.py with huggingface_hub
Browse files
app.py
CHANGED
@@ -2,14 +2,21 @@ import gradio as gr
|
|
2 |
from transformers import pipeline
|
3 |
import torch
|
4 |
|
5 |
-
# Load the NEW menu-aware model
|
|
|
6 |
model_id = "samurai9776/thought-classifier-menu-aware"
|
|
|
|
|
|
|
|
|
7 |
classifier = pipeline(
|
8 |
"text-classification",
|
9 |
model=model_id,
|
10 |
device=0 if torch.cuda.is_available() else -1
|
11 |
)
|
12 |
|
|
|
|
|
13 |
def classify_thought(ai_utterance, cx_utterance):
|
14 |
"""Classify if the conversation is complete or incomplete"""
|
15 |
|
@@ -30,40 +37,37 @@ def classify_thought(ai_utterance, cx_utterance):
|
|
30 |
# Determine prediction
|
31 |
prediction = "Complete β" if complete_score > incomplete_score else "Incomplete β οΈ"
|
32 |
|
33 |
-
# Determine
|
34 |
confidence = max(complete_score, incomplete_score)
|
35 |
-
|
36 |
-
method = "High confidence prediction"
|
37 |
-
else:
|
38 |
-
method = "Moderate confidence prediction"
|
39 |
|
40 |
-
return prediction, complete_score, incomplete_score,
|
41 |
|
42 |
# Create Gradio interface
|
43 |
with gr.Blocks(
|
44 |
title="Thought Completion Classifier - Menu Aware v2",
|
45 |
-
theme=gr.themes.Soft()
|
46 |
-
css="""
|
47 |
-
.gradio-container {
|
48 |
-
font-family: 'IBM Plex Sans', sans-serif;
|
49 |
-
}
|
50 |
-
"""
|
51 |
) as demo:
|
52 |
gr.Markdown("""
|
53 |
# π€ Thought Completion Classifier - Menu Aware v2
|
54 |
|
55 |
-
|
56 |
-
Now with improved context understanding and menu-aware predictions!
|
57 |
|
58 |
-
###
|
|
|
59 |
- β
Fixed 3,000+ mislabeled training examples
|
60 |
-
- β
Handles ambiguous terms
|
61 |
-
- β
|
62 |
-
- β
|
|
|
|
|
|
|
|
|
|
|
63 |
""")
|
64 |
|
65 |
with gr.Row():
|
66 |
-
with gr.Column(
|
67 |
ai_input = gr.Textbox(
|
68 |
label="AI Utterance",
|
69 |
placeholder="e.g., What sandwich would you like?",
|
@@ -75,14 +79,13 @@ with gr.Blocks(
|
|
75 |
lines=2
|
76 |
)
|
77 |
|
78 |
-
|
79 |
-
classify_btn = gr.Button("π Classify", variant="primary", scale=2)
|
80 |
-
clear_btn = gr.Button("ποΈ Clear", variant="secondary", scale=1)
|
81 |
|
82 |
-
with gr.Column(
|
83 |
prediction = gr.Textbox(
|
84 |
label="Prediction",
|
85 |
-
interactive=False
|
|
|
86 |
)
|
87 |
with gr.Row():
|
88 |
complete_score = gr.Number(
|
@@ -95,65 +98,46 @@ with gr.Blocks(
|
|
95 |
precision=3,
|
96 |
interactive=False
|
97 |
)
|
98 |
-
|
99 |
-
label="Confidence
|
100 |
interactive=False
|
101 |
)
|
102 |
|
103 |
-
# Examples
|
104 |
-
gr.Markdown("### π Try
|
105 |
gr.Examples(
|
106 |
examples=[
|
107 |
-
["What can I get for you?", "Chicken"],
|
108 |
-
["What sandwich would you like?", "Chicken"],
|
109 |
-
["Chicken or beef?", "Chicken"],
|
110 |
-
["Chicken or beef?", "Large"],
|
111 |
-
["What size?", "Large"],
|
112 |
-
["Anything else?", "Large"],
|
113 |
-
["Ready to order?", "Spicy Chicken Sandwich Combo"],
|
114 |
-
["Anything else?", "That's all"],
|
115 |
],
|
116 |
inputs=[ai_input, cx_input],
|
117 |
-
outputs=[prediction, complete_score, incomplete_score,
|
118 |
fn=classify_thought,
|
119 |
cache_examples=True,
|
120 |
)
|
121 |
|
122 |
-
# Event handlers
|
123 |
classify_btn.click(
|
124 |
fn=classify_thought,
|
125 |
inputs=[ai_input, cx_input],
|
126 |
-
outputs=[prediction, complete_score, incomplete_score,
|
127 |
)
|
128 |
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
)
|
134 |
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
- **Training samples:** 15,000+ (with 3,000+ corrections)
|
140 |
-
- **Accuracy:** ~92%
|
141 |
-
- **Base model:** DistilBERT
|
142 |
-
- **Special focus:** High precision for incomplete thoughts
|
143 |
-
|
144 |
-
### How it works:
|
145 |
-
1. **Context matters**: "What sandwich?" + "Chicken" = Complete
|
146 |
-
2. **Ambiguity detection**: "Anything else?" + "Chicken" = Incomplete
|
147 |
-
3. **Menu awareness**: Trained on 363 menu items with variations
|
148 |
-
|
149 |
-
### API Usage:
|
150 |
-
```python
|
151 |
-
from transformers import pipeline
|
152 |
-
classifier = pipeline("text-classification",
|
153 |
-
model="samurai9776/thought-classifier-menu-aware")
|
154 |
-
result = classifier("What sandwich? [SEP] Chicken")
|
155 |
-
```
|
156 |
-
""")
|
157 |
|
158 |
if __name__ == "__main__":
|
159 |
demo.launch()
|
|
|
2 |
from transformers import pipeline
|
3 |
import torch
|
4 |
|
5 |
+
# Load the NEW menu-aware model (v2)
|
6 |
+
# This model doesn't have pipeline.py - it's just a fine-tuned DistilBERT
|
7 |
model_id = "samurai9776/thought-classifier-menu-aware"
|
8 |
+
|
9 |
+
print(f"Loading model: {model_id}")
|
10 |
+
|
11 |
+
# Load without trust_remote_code (new model doesn't need it)
|
12 |
classifier = pipeline(
|
13 |
"text-classification",
|
14 |
model=model_id,
|
15 |
device=0 if torch.cuda.is_available() else -1
|
16 |
)
|
17 |
|
18 |
+
print("β
Model loaded successfully!")
|
19 |
+
|
20 |
def classify_thought(ai_utterance, cx_utterance):
|
21 |
"""Classify if the conversation is complete or incomplete"""
|
22 |
|
|
|
37 |
# Determine prediction
|
38 |
prediction = "Complete β" if complete_score > incomplete_score else "Incomplete β οΈ"
|
39 |
|
40 |
+
# Determine confidence
|
41 |
confidence = max(complete_score, incomplete_score)
|
42 |
+
confidence_text = f"{confidence:.1%} confidence"
|
|
|
|
|
|
|
43 |
|
44 |
+
return prediction, complete_score, incomplete_score, confidence_text
|
45 |
|
46 |
# Create Gradio interface
|
47 |
with gr.Blocks(
|
48 |
title="Thought Completion Classifier - Menu Aware v2",
|
49 |
+
theme=gr.themes.Soft()
|
|
|
|
|
|
|
|
|
|
|
50 |
) as demo:
|
51 |
gr.Markdown("""
|
52 |
# π€ Thought Completion Classifier - Menu Aware v2
|
53 |
|
54 |
+
Enhanced model with better context understanding and menu awareness.
|
|
|
55 |
|
56 |
+
### β¨ What's New in v2:
|
57 |
+
- β
Trained on 15,000+ examples (vs 900 in v1)
|
58 |
- β
Fixed 3,000+ mislabeled training examples
|
59 |
+
- β
Handles ambiguous terms like "chicken" (75 menu items!)
|
60 |
+
- β
Better context understanding
|
61 |
+
- β
~92% accuracy
|
62 |
+
|
63 |
+
### π― How it works:
|
64 |
+
The model understands context:
|
65 |
+
- "What sandwich?" + "Chicken" = **Complete** (context is clear)
|
66 |
+
- "Anything else?" + "Chicken" = **Incomplete** (ambiguous)
|
67 |
""")
|
68 |
|
69 |
with gr.Row():
|
70 |
+
with gr.Column():
|
71 |
ai_input = gr.Textbox(
|
72 |
label="AI Utterance",
|
73 |
placeholder="e.g., What sandwich would you like?",
|
|
|
79 |
lines=2
|
80 |
)
|
81 |
|
82 |
+
classify_btn = gr.Button("π Classify", variant="primary", size="lg")
|
|
|
|
|
83 |
|
84 |
+
with gr.Column():
|
85 |
prediction = gr.Textbox(
|
86 |
label="Prediction",
|
87 |
+
interactive=False,
|
88 |
+
elem_classes=["prediction-output"]
|
89 |
)
|
90 |
with gr.Row():
|
91 |
complete_score = gr.Number(
|
|
|
98 |
precision=3,
|
99 |
interactive=False
|
100 |
)
|
101 |
+
confidence = gr.Textbox(
|
102 |
+
label="Confidence",
|
103 |
interactive=False
|
104 |
)
|
105 |
|
106 |
+
# Examples showing context awareness
|
107 |
+
gr.Markdown("### π Try these examples to see context awareness:")
|
108 |
gr.Examples(
|
109 |
examples=[
|
110 |
+
["What can I get for you?", "Chicken", "Should be INCOMPLETE (ambiguous)"],
|
111 |
+
["What sandwich would you like?", "Chicken", "Should be COMPLETE (context clear)"],
|
112 |
+
["Chicken or beef?", "Chicken", "Should be COMPLETE (direct answer)"],
|
113 |
+
["Chicken or beef?", "Large", "Should be INCOMPLETE (doesn't answer question)"],
|
114 |
+
["What size?", "Large", "Should be COMPLETE (answers size question)"],
|
115 |
+
["Anything else?", "Large", "Should be INCOMPLETE (size without item)"],
|
116 |
+
["Ready to order?", "Spicy Chicken Sandwich Combo", "Should be COMPLETE (full item)"],
|
117 |
+
["Anything else?", "That's all", "Should be COMPLETE (clear ending)"],
|
118 |
],
|
119 |
inputs=[ai_input, cx_input],
|
120 |
+
outputs=[prediction, complete_score, incomplete_score, confidence],
|
121 |
fn=classify_thought,
|
122 |
cache_examples=True,
|
123 |
)
|
124 |
|
|
|
125 |
classify_btn.click(
|
126 |
fn=classify_thought,
|
127 |
inputs=[ai_input, cx_input],
|
128 |
+
outputs=[prediction, complete_score, incomplete_score, confidence]
|
129 |
)
|
130 |
|
131 |
+
gr.Markdown("""
|
132 |
+
---
|
133 |
+
### π Model Comparison:
|
134 |
+
- **v1**: Rule-based + neural (samurai9776/thought-classifier)
|
135 |
+
- **v2**: Pure neural with better training (samurai9776/thought-classifier-menu-aware)
|
136 |
|
137 |
+
### π Links:
|
138 |
+
- [Model v2 (Current)](https://huggingface.co/samurai9776/thought-classifier-menu-aware)
|
139 |
+
- [Model v1 (Previous)](https://huggingface.co/samurai9776/thought-classifier)
|
140 |
+
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
|
142 |
if __name__ == "__main__":
|
143 |
demo.launch()
|